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Abstract 

We investigate theoretically and by numerical 
simulations the effects of the atomic recoil on the 
frequency and fiinge contrast of microwave atomic 
frequency standards. Such effects arise because of the 
influence of external degrees of freedom on the phases 
and the spatial positions of the interfering wave packets. 
We show under which conditions such effects lead to a 
frequency shift and examine the loss of contrast of the 
interference signal (Ramsey fringes). We use an 
interferometric description to model the frequency 
standards, treating simultaneously internal and external 
degrees of fieedom [ 11. We consider multiple momentum 
exchanges in 3D between the atoms and the standing 
microwave field inside the cavity leading to a large 
number of wave packets that leave the cavity with 
different momenta. At detection, these wave packets 
interfere giving rise to Ramsey fiinges that are modulated 
by the interference of the external states of the wave 
packets. Similar treatments have proved efficient when 
treating ID recoil effects in standing laser waves [2]. We 
apply this theoretical model numerically to laser cooled 
atomic fountain frequency standards and investigate the 
behaviour of the observed signal as a function of the 
frequency standard parameters (microwave power, 
launching height, etc.). Finally, we discuss possible 
experimental methods that could be used to observe such 
effects. 

1. Introduction 

In the last decade microwave atomic fountain 
frequency standards using laser cooled atoms have 
reached uncertainties of one part in I O l 5  [3] and are 
expected to improve by another order of magnitude in 
rubidium standards [4] and in space borne caesium 
standards [ 5 ] ,  or even beyond that in optical frequency 
standards [2,6]. Paralleling that evolution atom 
interferometers have been successfully applied to other 
fields of metrology (gravimetry, gradiometry, gyroscopes) 
equalling or surpassing classical methods of 
measurements in those fields as well [7-91. However, the 
two fields have to a large extent evolved separately 

although they rely essentially on the same principles. 
Indeed, while frequency standards have traditionally been 
described by the framework dating back to Ramsey [lo] 
involving only the internal energy states of the atoms, 
atom interferometers on the other hand require 
descriptions that include the external motion and position 
states of the atoms. In fact any superposition of internal 
states goes hand in hand with a superposition of external 
states so a generic description of all these instruments 
(frequency standards, gravimeters, gyroscopes etc.) in 
terms of atom interferometry [1,1 I ]  should be of 
advantage to both fields. In this paper we apply such a 
description specifically to microwave frequency standards 
in order to investigate the effects of the external states of 
the atoms on the observed frequency and contrast of such 
standards. 

Broadly speaking, any superposition of internal 
energy states of an atom induced by interactions with an 
electromagnetic field will give rise to a superposition of 
external states (external wave packets) whose momenta 
will differ by Ak (where A is Planck's constant and k is 
the wave vector of the electromagnetic field) due to the 
absorption of the photon momentum by the atom. The 
different external states will lead to additional energy 
differences (kinetic, potential). These will appear as a 
frequency shift of the standard as they add to the internal 
energy difference the standard is intended to measure. As 
an example, the kinetic energy difference due to the 
photon recoil is (hk)*/2M (where M is the atomic mass) so 
the relative frequency shift in the case of a freely 
propagating wave (k = w'c) is 

(hk)2 1 Ao 
2M Am 2Mc2 

- 

where c is the vacuum speed of light. For the hyperfine 
transition of caesium (w = 5.8 10" rad/s) this leads to a 
frequency shift of = 1.5 Furthermore, it has been 
shown [2] that atoms interacting with standing 
electromagnetic waves (e.g. inside a microwave cavity) 
are subject to multiple photon processes, absorbing 
photons from one travelling wave component of the field 
and emitting them into another. This leads to final 
external states with total momenta nhk (where n is an 
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integer) so the order of magnitude of the shift obtained 
from (1) is likely to be only a lower limit of the total shift 
one might expect. These order of magnitude estimates are 
only a factor ten or less smaller than present frequency 
standard uncertainties, and of the same order as the 
uncertainties expected for the near future, which provides 
the motivation for the more detailed investigation 
presented in this work. 

Another effect due to the separation of external states 
is a possible loss of contrast of the interference hnges 
(Ramsey fringes). Typically this will occur when the 
spatial separation of the interfering wave packets at 
detection is larger than some characteristic length of the 
atoms (atomic coherence length). The atomic wave 
packets separate at constant velocity (the recoil velocity, 
v, = AWM) so this effect is likely to be more important for 
clocks with long drift times between the first interaction 
and detection, like fountain or space clocks. 

We investigate both these effects describing the 
frequency standards as two zone atom interferometers. 
We model the atoms by Gaussian wave packets 
propagating fkeely (we neglect here gravitational, inertial 
and other external fields) through the interferometer, 
interacting with the microwave standing waves in the two 
interaction regions (cavities). 

We first present the fundamental mathematical 
formalism required for the description of the atomic wave 
function and it's evolution, in free space and in the 
presence of the electromagnetic coupling field. In section 
3 we apply this formalism to a simple, somewhat 
idealised, one dimensional, two zone standing wave 
interferometer. We then show how to apply the method to 
real microwave atomic frequency standards (section 4), 
with the results of a complete numerical simulation for a 
fountain standard given in section 5. We qualitatively 
explain the, somewhat surprising, results of that 
simulation in section 6 and conclude with a discussion of 

possible experimental observation of the predicted effects 
and of future perspectives on remaining theoretical work 
in section 7. 

2. Fundamentals 

We treat here a two level atom with ground and 
excited internal states 18) and le) whose natural life- 
times are much longer than the characteristic times of the 
experiment. We therefore neglect any spontaneous 
emission processes and treat the electromagnetic field 
classically. The complete wave function of the atom can 
be expressed as a two component matrix 

For simplicity we consider here only one spatial 
dimension, the generalisation to three dimension being 
straightforward. 

The coupling field is 

A f ( z )  cos(wt+d) (3 1 

where A is the amplitude of the electric or magnetic field 
(depending on the interaction type), u its angular 
frequency and 4 an arbitrary initial phase. The function 
Az) describes the spatial form of the standing wave. 

We assume a near resonant field and use the rotating 
wave approximation, neglecting off-resonant terms at 
frequencies 2 w ,  so the Schrodinger equation reduces to a 
pair of coupled equations 

for free particles in the presence of the coupling field. 
Here M is the mass of the atom, CY= u - (E,-EJA is the 

detuning and 0 = eDop * A , l g ) / h  is the Rabi 

frequency with the operator of the electric/magnetic 
field amplitude and D, the appropriate atomic multipole 
operator depending on the interaction type 
(electric/magnetic dipole, quadrupole, etc.). For 
microwave frequency standards R z @ / A  where p s  is 
the Bohr magneton and B is the amplitude of the magnetic 

( I  

I 
field component parallel to the static magnetic field with 
Az) the spatial variation of that component. Note that (4) 
reduces to the simple free particle Schrodinger equation in 
the absence of the coupling field (R = 0) and to standard 
Rabi equations for a two level system (see e.g. [12] equ. 
(10)) when neglecting the spatial dependence (Y(f ,z)  -+ 
Y ( t )  andf(z) = 1). 

We will describe the external state of the atoms in 
terms of normalised Gaussian wave packets centred 
around a position zo at r = 0 and a velocity vo: 
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where the normalisation fimction in 1D is 
”-i8(1) 

I 
in the same state). As an example, for Cs atoms cooled to 
=Z 0.8 pK (6v 7 m d s )  one obtains A 2 34 nm. 

3. Standing wave 1D interferometer 

At 

2MA2 
tg(28) = - (7) 

and the fknctions describing the spreading of the wave 
packet and it’s phase curvature are 

M 2 A 2  
A 2 t 2 ( 1  + E )  

A4 
2At(l + E )  

P(t )  = 

Q<t> = 

with €defined as 
4M ’ A4 

E =  
A 2 t 2  ’ 

(9) 

The constant A will play a crucial role in the results 
presented in the following sections. It has the dimension 
of length and corresponds (as can be easily checked) to 
the half-width (in z) of the wave packet at the initial time t 
= 0. Physically, this corresponds to the half-width when 
the wave packet is minimal i.e. when A.& = hl2, which is 
typically the case for atoms in the ground state of the 
cooling (Sysiphus) potential wells while the cooling is on. 
Therefore, we will set t = 0 at the end of the cooling 
phase, and approximate the atoms as Gaussian wave 
packets with some “mean” initial width A which depends 
in fact on the way the potential well eigenstates are 
populated during the cooling. Note that the parameter 
usually known in fountain clocks is the velocity 
distribution (temperature) of the atom cloud, but that this 
parameter has no simple direct relation to the width A, (A 
is, in general, not given by simply the Fourier transform 
of the velocity distribution). Indeed, the same velocity 
distribution can be obtained by a statistical ensemble of 
atoms in states with lower 6v (large A) moving at different 
velocities or by an ensemble of atoms all in the same state 
(larger 6v, all centred on the same vg). Therefore the 
observed velocity distribution can only provide a lower 
limit on A (if it was smaller the observed velocity 
distribution would have to be larger even if all atoms were 

Consider an atom interacting with a one dimensional 
standing wave of form&) = cos kz (sum of two counter- 
propagating travelling waves). The atom is initially in the 
ground internal state and at rest with respect to the 
standing wave. The field is pulsed in a sequence of two 
pulses, each of intensity and duration such that the 
probability of an atom being in the same internal state 
before and after the pulse is 0.5 (7d2 pulses). To change 
internal states the atom exchanges photons with each of 
the travelling wave components of the field, thereby also 
gaining or loosing momentum Ak. If the photon is 
absorbed from one of the waves and re-emitted into the 
other the final internal state is the same as the initial one 
but the wave packet has gained a total momentum of 2Ak. 
The same process may repeat several times therefore each 
interaction leads to a multitude of external states (see fig. 
1 ) .  

Formally, we need to solve the Schrodinger equation 
(4) withfiz) = cos kz = ’/z(eik+e-k). To do so we first 
substitute 

a .I1 

where a,n are integers and cp”,(t,z) are normalised 
Gaussian wave packets (c.f (5)) centred on velocities nv, 
and positions avJ at t=Tb (i.e. zo = av,T - nvrTb in ( 5 ) ) ,  
each multiplied by a complex coefficient e”,(t)/g”,(t) that 
depends only on time. Substituting (1 1)  into (4) we note 
that the resulting equations are satisfied if the Ye,g(t,z) are 
solutions of the free particle Schrodinger equation (which 
is of course the case for a linear superposition of 
Gaussians) and if 

a,ii 
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n i 2  n 1 2  

z 

] 2 = 0  

v = 2 v ,  

v = v ,  

v = o  

v = - v ,  

v = -2 v ,  

t =  0 t =  T ,  t = T b + T  t = T ,  

Figurel: Space-time picture of a two zone standing wave interferometer. The atomic wave packet centres follow the red 
(ground state) and green (excited state) lines. Initially (PO)  the atom is in the ground state and at rest at -=O. A first n12 
standing wave pulse is applied at t=Tb and a second after a free evolution time T (at t'Tbfr). All ground (excited) wave 
packets interfere at detection (t=Td). 

For the first interaction Tb-62 I t 5 Tb+62 we start 
with a transformation - - 
@,"(t,z) =p,"(t ,a)exp 

We neglect the recoil kinetic energy and the movement of 
the wave packets during the interaction time r (Raman- 
Nath approximation). This amounts to neglecting phase 
terms that are of order M(nv,)*zfA i.e. -dT smaller than 
the main recoil shifts accumulated during free 
propagation, and variations of the field over distances of 
order v,s (< m for typical Cs fountain parameters). 
With this approximation it is easily seen (using (5) and 
transforming according to (1 3)) that during the interaction 
(Tb- 62 5 t 5 Tb+ 62) we have 

Then, equating terms of identical @: ( f ,  Z )  , (12) reduces 
to an infinite set of coupled equations 

The coefficient of each @," ( t ,  Z )  is coupled to two others 
corresponding to the wave packets whose momenta differ 
by f hk. The equations ( 1  5) model, of course, the multiple 
photon interactions taking place in the standing wave. 
Their solution provides the complete description of the 
quantum system after the interaction. The only initial non- 
zero coefficient is for g:(to) = 1  which provides the 
initial conditions for the solution (to = Tb-d2). 

For the resonant case (S= 0) (15) has an analytical 
solution in terms of Bessel functions (c.f. [2, 131). With 
the above initial conditions 

where the J,,,(x) are Bessel functions of the first kind and 
m is an integer running from -00 to 00. The probability to 
detect an atom in the excited state after the interaction is 
simply given by (neglecting again the separations and 
energies due to the external states and integrating over all 
z)  

where we have used (16) and standard identities of the 
Bessel functions (c.f [13]). So Rabi oscillations are 
recovered, in particular a m'2 pulse (fl7 = ni2) does 
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indeed correspond to a transition probability of 0.5. For 
off-resonant pulses (&O) (15) has to be solved 
numerically which, in general, raises no particular 
difficulties. 

In the absence of the coupling field (between the two 
interactions) only the pan(t;) evolve, the coefficients 
ea,(f)/ga,(f) remain unchanged (as can be easily seen from 
(1 2) when setting 

I Tb+T+62) is 
treated in a similar way as the first one. We first 
transform, transferring phases accumulated during the fkee 
propagation (recoil energy) from the Gaussians cp”,,(t,z) to 
the coefficients ea,(t)/ga,(t) 

= 0). 
The second interaction (Tb+T-d2 5 

The approximate relation (14) then becomes (under the 
same approximation) 

relating wave packets of different vo but same position at 
the second interaction ( t  = Tbfz). This leads to coupled 
equations analogous to ( 15) 

which have to be solved once for each point at which one 
of the wave packets populated during the first interaction 
amves(see Fig. 1). 

Finally, the solutions of (15) and (20) provide the 
coefficients ea,(&)/ga.(&) at the time of detection and the 
probability of detecting either one of the internal states is 
the result of the interference between all wave packets in 
that internal state at detection. For example, for the 
excited state 

I 12 

del 1n.o I 

where the integral is taken over the spatial extension of 
the detection region. 

As an aside, it can be noted that the case where the 
standing waves are replaced by travelling ones can be 
treated using the same formalism. Only the appropriate 

are retained in (1 2) and as a result equations (1 5 )  and 

(20) reduce to only pairs (instead of infinite sets) of 
coupled equations. Those pairs of equations are, of 
course, standard Rabi equations with known analytical 
solutions [10,12] for all 6. Then using (21) for the 
detection (where the sums now involve only two wave 
packets for each internal state) one obtains expressions 
including the (single photon) recoil shift and the loss of 
contrast due to the separation of the wave packets (c.f. last 
paragraph of section 6). 

4. Application to microwave standards 

We consider here frequency standards with the 
interactions taking place inside microwave cavities of 
rectangular cross-section operating in the TElo mode. The 
magnetic dipole atomic transitions are excited by the 
component of the magnetic field inside the cavity that is 
parallel to the static quantisation field. Then the form of 
the relevant standing wave inside the cavity is 

f(r) = cos(k, .r)cos(k2 - r ) .  (22) 

With the cross-sectional plane in the x-z plane, 
kl=(0,0,2dAJ where the wavelength in the z direction 
(4) is simply twice the z-dimension of the cavity and 
kz=(0,2xl;1,,0) where 2, is the guide wavelength. The 
field is zero everywhere outside the cavity. 

Consider first an atom at rest well inside the cavity 
with the field being pulsed for the two interactions 
(temporal case). The field is described correctly by (22) 
wherever atoms are present. The fact that the field is zero 
outside the cavity plays no role as the atoms do not “see” 
the zero field (mathematically, Az) only appears in the 
Schrbdinger equation (4) in the product Az)T(r,z) so its 
value in regions where Y(t,z) = 0 plays no role). This 
assumption remains true as long as the Gaussians in Y(t,z) 
are significantly smaller than the size of the cavity 
(typically > 1 cm). The problem is then treated in the 
same way as in the previous section except that we 
substitute (22) into (4) (extended to 3D) writing it as 

so now four recoil directions are possible leading to 
external Gaussian states cpabb,(t,r) with their positions and 
velocities characterised by 2x2 matrices. This then leads 
to equations of form (1 5 )  and (20) for the first and second 
interactions where now each coefficient is coupled to four 
others. Finally the sum in (21) has to be extended over all 
four indices and the integral over the complete detection 
region in 3D. 

In general, atomic frequency standards operate with 
the atoms moving through the two cavities (or twice the 
same one in fountain clocks), the microwave fields being 
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on permanently (spatial case). In that case the atoms “see” 
the transitions from (22) to zero field outside, i.e. during a 
short time (entrance and exit of the cavity) the atoms 
“see” a microwave field that is not correctly described by 
(22). Mathematically, over some time interval the atomic 
wave hnction overlaps with a field that is not correctly 
described by pure cosines and hence (23) is no longer 
correct. 

One can approximate the spatial case by the temporal 
one, when neglecting these “transit effects” occurring 

example, we use N,, = 9 for d 2  pulses). One possible 
estimation of the accuracy of the solutions is to check that 
the total detection probability when taking into account 
only the coefficients e(r)/g(t) (plane wave approximation) 
sums to 1, i.e. 

(24) 

Power (f?T) 
71/2 
3 d 2  
5x12 

when the atoms enter or exit the cavity (during the “transit 
times” when the atomic wave function is not completely 
outside or inside the cavity). This approximation is likely 
to hold as long as the atomic wave functions are much 
smaller than the dimensions of the cavity, as in that case 
the transit times will be much smaller than the total 
interaction time r so the probability of absorbing or 
emitting a photon during transit is very small (even more 
so if the atoms cross the cavity parallel to kl, i.e. with 
field zeros at entrance and exit). For atomic fountain 
kequency standards this is likely the case for the first 
interaction (wave functions at least a factor 10 smaller 
than the cavities) but not necessarily for the second one. 
Quantifying precisely the effects of this approximation is 
part of the work still in progress (c.f. section 7). 

Recently, the spatial case was treated rigorously in 
the weak field limit [14]. The results are consistent with 
those presented here (section 6). Further work to clarify 
the transition between the spatial and temporal cases is 
under way. 

Shift (Acc, lw) 
2.4 
-7.4 10-l6 
1.2 lo-’s 

5. Numerical results 

We numerically calculate the effect on the frequency 
shift and the contrast of the Ramsey fringes for a “typical” 
C s  atomic fountain standard using a rectangular cavity. 
The parameters of the modelled fountain are as follows: 
total time of flight of the atoms, T, = 0.8 s (launching 
height -78 cm); time f?om the end of cooling to the first 
interaction, Tb = 0.15 s (cavity -47 cm above cooling 
region); time between the two interactions T =  0.5 s;  size 
of detection region - 1 x 1 ~ 3 0  cm. The size of the 
detection region is determined by the cross-section of the 
holes in the cavity (plus the small horizontal spreading of 
the wave packets between the second interaction and 
detection) and the time during which the detection beam 
is on -100 ms. The atoms are cooled to a temperature of 
0.8 pK corresponding to a minimal value of A 2 34 nm. 
The cavity is a “standard’ rectangular cavity with 22.86 
mm x 10.16 mm cross-section which corresponds to k ,  = 

137.43 m-’ and k2 = 135.04 m-’. The atoms cross the 
cavity along the vertical z direction parallel to k l  

We numerically solve the sets of coupled equations 
(15) and (20) for the case of four-fold coupling (c.f. (23)). 
We impose a cut-off number of total photon exchanges 
(number of recoils N,,,) determined by the required 
accuracy of the solution and the microwave power (for 
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[nm] 
34 

34 
68 

[ cm] [cm] [ s] 
1.2 30 0.15 2.9 10 - l~  

1.2 0.2 0.15 4.7 10- l~  
1.1 30 0.15 8.8 

value in brackets is consistent with 0 when taking into 
account the estimated uncertainties of the numerical 
calculation. 

34 
34 

All shifts are calculated for d 2  pulses and given as a 
finction of the initial width of the wave packets (A) and 
of the size of the detection region in the horizontal plane 
(size of the square in the x-y plane) and in the vertical (z) 
direction. The last line corresponds to the special case 
where the cooling region is directly below the cavity (T,, = 
0) which is interesting from a theoretical point of view 
(see section 6). 

It is surprising that the calculated frequency shifts are 
about an order of magnitude smaller than the ones 
calculated in the plane wave approximation (c.f. table 1) 
or from the simple order of magnitude estimation (1). 
Understanding these results is more complex and treated 
in detail in section 6. 

Table 3 gives the calculated contrast, C, of the 
interference (Ramsey) fhnges. The contrast is simply the 
difference between the observables 0, and 0, (c.f. (25 ) )  at 
resonance (6= 0), i.e. 

0.2 0.2 0.15 5.6 10- l~  
1.2 30 0 (< 10.'8) 

f2r 

d2 
X 

3 d 2  
d 2  
XI2 
d2 
d 2  

Obviously one does not expect to see Ramsey fiinges 
for x pulses. Nonetheless the quantity C as defined in (26) 
is of interest as it can be observed and is affected by the 
loss of coherence due to the separation of the wave 
packets at detection. 

One expects the contrast to decrease as the separation 
of the wave packets increases beyond some characteristic 
length (atomic coherence length). This is indeed observed 
in the first three lines of table 3 (increased microwave 
power corresponds to larger separations as states at 
multiples of v, get more populated). On the other hand, 

A *-Y 2 c 
[nm] [cm] [cm] 
34 1.2 30 0.876 
34 1.2 30 0.639 
34 1.2 30 0.444 
68 1.1 30 0.983 
136 1.1 30 0.998 
34 1.2 0.2 0.990 
34 0.2 0.2 1 .ooo 

increasing the coherence length should increase the 
contrast. This is also observed in our simulation when 
increasing A, so A plays a role similar to a coherence 
length (see also section 6). As is well known from 
Gaussian optics, reducing the detection region also leads 
to a recovery of the interference contrast. This is 
confirmed in the last two lines of table 3. 

It should be noted that all results obtained here are, 
strictly speaking, only valid for the case of a single atom 
described by a Gaussian wave function. For a statistical 
ensemble of such atoms some of the results may not, or 
only partly, apply. A detailed modelling of that case may 
be the subject of future work (c.f. section 7). 

6. Qualitative understanding 

To reach a qualitative understanding of the results 
presented in the previous section we will return to the 1D 
picture of section 3 (fig. 1) and consider the weak field 
limit i.e. reduced microwave power so that all interactions 
involving more than one recoil in each interaction zone 
can be neglected. We will look at the detection probability 
for the excited state, so only four wave packets interfere at 
detection: eI0pl0, el-'plo1, e.,'gI', and e- lOg10 which we 
will re-name for notational simplicity 4 ,  4, &and 84 (see 
fig. 2). Furthermore, we will assume that the detection 
region is much larger than the width of the wave packets 
at detection so the integral (21) can be extended from -03 
to 00. 

_ _  $ 1  ( t ,  z >  
8 -  
I - .  z -. 

I 

t = T,+T t =  T ,  
Fig. 2: Excited state wave packets at detection in the 
weak field approximation. 

Then the probability (21) of detecting an atom in the 
excited state is 

j= l  k t j  J 

where the A, and 4 are real functions of T, and z 
representing the amplitude and phase of the complex 
wave fimctions 4( Td,z) = A,( Td,z)exp[iprJ(Tds)]. 

Of the interference terms in the double sum of (27) 
only those that were in different internal states during 
time T will be dependent on the detuning S, and can 
therefore lead to a frequency shift of the Ramsey fringes. 
They are given by 
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where, by symmetry, the two terms inside each bracket 
are identical. 

Before evaluating (28) rigorously we will try to 
estimate physically the content of the two phase 
differences 4-4 and 4-4. They are both affected by the 
phase difference due to the detuning ST and by the recoil 
energy difference Mv:Ti2. However, 4 and 4 have a 
momentum difference 2hWM which leads to an additional 
z-dependent phase term not present in the interference 
between 4 and 4. From these arguments one expects 

hk2 
2M 
hk2 
2M 

4 1 - $ 2 ~ h T - - T  

~ l - $ 3 ~ o C - - T + 2 ~  

When integrating the cosines over all z the z-dependent 
term in (29) averages to 0, however, for Gaussian wave 
packets the integral is effectively limited to the width of 
the Gaussians. In our case this is of the same order as the 
microwave wavelength associated with k so the additional 
term may play a non-negligible role. To estimate this, we 
simply choose a "reasonable" value for z in (29), for 
example, the midpoint between the two interacting wave 
packets 4 and 4, z = AkTRM. Then the total phase shift 
in the second bracket of (28) is bT+hpTRM and the two 
cosines simply add to 2cos(6T)cos(hkZTRM) which is 
consistent with zero shift. So the cancellation of the recoil 
shift is the result of the coherence between external states 
of opposing recoil directions that does not average on 
detection because of the comparable size of the atomic 
wave packets and the microwave wavelength. In fact, as 
we will show in the rigorous treatment below, the criteria 
for cancellation requires that the initial size of the wave 
packets A (rather than the size of the wave packet at 
detection) be much smaller than the wavelength of the 
standing wave. 

We can find a rigorous expression for (28) by 
substituting for the amplitudes and phases from the 
corresponding Gaussian wave packets (c.f. (S)), bearing in 
mind that the two complex coefficients e:,(?-,) (in 4 
and 4) have a phase difference of 6T - hpTRM with 
respect to the other two e:: (T,) (in 4 and 4) due to the 
internal and kinetic energy difference during the time T 
between the two interactions (mathematically this is the 
result of the 6 terms in (20) and the phases in the 
transformation (18)). The integrals of the resulting 
functions have known analytical solutions. After some 

simplification, and expanding in terms of the small 
parameter E (c.f. (lo), for A=34 nm E =  10.") we obtain 
for the 6dependent interference terms 

h2k2Tb(T, + T )  

(30). 

The first exponential in (30) simply describes the loss 
of coherence for separated wave packets (sometimes 
called a visibility function) and is responsible for the 
contrast observed in the numerical simulation (table 3). 
The two cosine interference terms add to 
2cos( s7)cos(hk2TRM) (consistent with 0 frequency shift) 
when the exponential factor of the second term is equal to 
one. For the parameters used in section 5 we obtain 
and ~ 0 . 2 5  for the first and second term inside the 
exponential respectively, so we expect some cancellation 
of the plane wave recoil shift as observed when 
comparing tables 1 and 2 of section 5. The second term in 
the exponential is dominant so we expect that for 
increasing A the observed shift decreases, as is indeed the 
case (table 2). In the special case of Tb = 0 we expect near 
zero shift (the second term in the exponential is 0) which 
is in agreement with the last line of table 2. 

For arbitrarily small & the recoil shift will no longer 
cancel when the 2A2@ term in the exponential is no longer 
<< 1, which corresponds to the case when the wavelength 
of the standing wave is of the same order or smaller than 
the initial width of the wave packets (atomic coherence 
length). This is consistent with the idea that, in that case, 
the z dependent phase term in (29) averages to 0 over the 
atomic width. 

Note that (30) can only provide a qualitative 
explanation of the results of the simulations (section 5 )  or 
of experiments, due to the fact that all external states at 
multiples of Y ,  are neglected, that only ID recoils are 
taken into account, and that the detection is extended over 
all space rather than the actual detection region. 

As an aside, when using travelling waves instead of 
standing ones (c.f. last paragraph of section 3 )  one obtains 
an interference term identical to (30) without the second 
cosine term. The well known recoil shift obtained in 
general from a plane wave treatment (e.g. [12]) is 
recovered but additionally the Gaussian treatment 
provides access to the loss of contrast related to the 
separation of the atoms. 

7. Conclusion 

We have presented detailed calculations of the 
Gequency shift and contrast loss of the interference 
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(Ramsey) fringes in microwave atomic frequency 
standards due to the external states of the atomic wave 
packets. Depending on the experimental conditions the 
predicted frequency shift is of the order of a few parts in 
10” or less. This is an order of magnitude smaller than 
expected from order of magnitude estimates or 
calculations using a “plane wave” approach. We have 
qualitatively explained this surprising result, showing that 
it arises Gom the coherence between external states of 
opposing recoil directions that does not average on 
detection because of the small size of the atomic wave 
packets when compared to the microwave wavelength. 
We have derived explicit conditions (equ. (30)) under 
which such “cancellation” of the recoil shift occurs. 

It is interesting to note that both main results obtained 
here (partial cancellation of the recoil shift and contrast 
loss) are not accessible to the plane wave approach used 
in most theoretical treatments on atom interferometry (e.g. 
[ 12,151). Indeed, plane wave treatments reach their limits 
when a loss of contrast, or interference between wave 
packets with differing velocities and/or positions become 
important. In such situations approaches based on 
localised wave packets (e.g. Gaussians), like the one 
developed by Borde and co-workers [14,16], have to be 
used. 

The prediction that the recoil shift in microwave 
atomic frequency standards should not exceed a few parts 
in IO” (although a plane wave approach or order of 
magnitude estimates indicate a shift is of particular 
importance to the uncertainty evaluation of the next 
generation of standards (Rb fountains and space Cs 
clocks) which are expected to reach uncertainties of one 
part in 10l6 or less. This prediction is based on the theory 
presented here which is only a first approach that needs to 
be hrther studied (see below). Nonetheless, some 
experimental investigation may already be accessible with 
present technology. In particular the predicted loss of 
contrast (table 3) and its variation with experimental 
parameters (microwave power, launching height, etc.) 
may well be observable in present day atomic fountain 
standards when equipped with a rectangular cavity. Such 
experiments could verify the predictions presented here 
and thereby clarify whether the recoil shift can be 
neglected in the fiequency evaluation of fiture standards. 

Additionally such experiments will allow the 
investigation of the atomic density matrix (the ensemble 
of atomic wave functions) of a cold thermal cloud of 
atoms. In particular, some information on the coherence 
length of such a system may be obtained which is of 
prime importance for all atom interferometry experiments. 
For example, future space clocks that intend to take 
advantage of long drift times between the interaction 
zones may be subject to a significant loss of coherence 
due to the large separation of the wave packets at 
detection. In that case they would be ideal experiments to 
probe in more detail the quantum nature of the cold atom 
cloud. 

To finish we will dress a list of related issues that 

generalise to other (non Gaussian) wave functions 
generalise to a statistical ensemble of atoms 

include other external fields (gravitational, inertial) 
apply to cylindrical microwave cavities 

were not treated in detail in the present work: 
- 
- 
- quantify transit effects 
- 
- 

Some of the above points may prove essential for a 
complete understanding of the processes taking place in 
microwave frequency standards and more generally in all 
atom interferometry experiments. They are the subject of 
ongoing studies, the results of which will be presented in 
hture publications. 
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