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Résumé. — Nous étudions I'influence de la résonance électronique sur les largeurs de raies de la Diffusion Raman
Anti-Stokes Cohérente (DRASC) dans les gaz & faible pression. D’autres processus non linéaires du 3° ordre
sont aussi examinés. Nous avons effectué une étude théorique de tous ces phénoménes en utilisant une représenta-
tion diagrammatique des polarisations non linéaires. Les diagrammes permettent de classer aisément les diffé-
rents processus physiques qui contribuent a la création de la polarisation non linéaire, et de calculer rapidement
grice a des régles simples les termes correspondants de la susceptibilité. En DRASC, les termes de la susceptibilité °
qui dominent en régime Doppler (parce qu’ils ne subissent pas d’élargissement Doppler) différent de ceux qui
dominent en régime collisionnel. Ceci entraine d’importantes différences entre les contenus spectraux des régimes
Doppler et collisionnel. Au contraire, en diffusion Stokes cohérente ainsi qu’en diffusion Raman stimulée, ‘ce
sont les mémes termes qui dominent dans les deux régimes. Nous tragons quelques formes de raies types. Nous
montrons qu’il est aisé de généraliser cette étude 4 tous les processus non linéaires.

Abstract. — We examine the effect of electronic resonance enhancement on the line broadening for Coherent Anti-
Stokes Raman Scattering (CARS) and related third-order non linear processes, in low pressure gases. These
phenomena are analysed theoretically within the framework of a time-ordered diagrammatic representation of
nonlinear polarizations. Diagrams facilitate the classification of the various physical processes and provide a
way to readily derive all the susceptibility contributions. In CARS, the susceptibility terms which are Doppler-
free and thus prevail in the Doppler limit are different from those which dominate in the collision broadening
regime. This causes important changes in the spectral content. On the contrary, the same terms are seen to domi-
nate, in both regimes, in coherent Stokes Raman scattering or in stimulated Raman scattering. Typical line con-
tours are displayed. The generalization to all nonlinear processes is outlined.

1. Introduction. — One of the finest achievements
of Coherent Anti-Stokes Raman Scattering, or CARS
[1, 2], is the high-resolution near Doppler- free
Raman spectroscopy of gases [3-7]. The reduction
in Doppler broadening for CARS results from the
forward scattering character of the process, : the
Doppler shifts of the applied collinear pump waves
at w, and w, are of the same order in the frame of a
moving molecule. Consequently, if the difference
@; — ®, is tuned to the Raman transition w,, of a
molecule at rest (Fig. 1), this difference is also approxi-
mately at resonance with w,, whatever the axial
velocity of the molecule. Sirictly speaking, a residual

Doppler broadening remains with a width which is of
the order of w,(2 ky T/Mc*)*/?, where T 'is the tempe-
rature, M the mass of the molecule and kg the Boltz-
mann constant. This effect has been demonstrated
experimentally and studied theoretically [3, 4, 7-10].
The problem that we address here is the influence of
possible resonances between any of the three light
frequencies involved in CARS (o, w, and
w3 = 2m; — w,) and any of the allowed one-pho-
ton optical transitions of the molecules : such addi- .
tional resonances may affect the line contours in the
Doppler broadening regime.

A recent investigation of molecular resonant CARS
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Fig. 1. — Energy level diagram for CARS: a, b are the rovibra-
tional states pertaining to the ground electronic state and coupled
by the Raman transition w,, ; n, n’ are rovibrational states pertaining
to the excited electronic state ; @, and w, are the pump frequencies
and o, = 2w, — w, is the anti-Stokes frequency.

spectroscopy has established that the spectra contain,

for the most part, three distinct families of lines [2,

11, 12], with intensities which depend upon the popu-
lation of the lower Raman level a. We shall examine
in section 3 the line contours for these three families,
and also the contours of the hot lines associated with
the upper Raman level b. The theory is discussed
in the case of mixed broadening (collisional + Dop-
pler). The discussion is done in the framework of
the time-ordered diagrammatic representation of
nonlinear polarizations, which has been used recently
for resonant CARS in the pure collision broadening
limit [2, 12, 13] as well as for saturation spectroscopy
and Doppler-free two-photon spectroscopy [14-17].
We show that not all CARS lines are Doppler-free,
which is in contradiction to what was speculated in
ref. [11]. Doppler broadening in off-resonance CARS
is also discussed briefly : we confirm the recent results
of Henessian and Byer [9].

We also show that a representation of the time-
ordered processes in energy-momentum space allows
us to readily determine if any given nonlinear process
is subject to Doppler broadening [17, 18]. In this
context, we establish the difference between true
Doppler-free processes (such as two-photon absorp-
tion with counter-propagating beams), where all
molecular velocity groups contribute equally, and
particular processes (such as one-photon enhanced
CARS and saturation spectroscopy) where a specific
velocity group may give an overwhelming contribu-
tion of narrow width. Finally, the generalization to
other classes of nonlinear optical processes of third
order such as Stimulated Raman Scattering (SRS)
and Coherent Stokes Raman Scattering (CSRS)
is outlined.

2. Mathematical Framework. — 2.1 NONLINEAR
POLARIZATION. — As is customary in CARS, we
assume that the optical excitation is provided by two
monochromatic plane waves, having the same polari-
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zation vector ¢ aligned along the X axis, and propagat-
ing in the direction of the Z axis. The total applied
electric field is written (!) :

&8z, 1) =

=¢ Y 1Eexpi(—w;t+kjz+ ) +ce (1)
j=1,2

In an isotropic medium such as the gas that we
consider, the induced CARS polarization has the
same polarization vector é and can be written :

(3)

fl“”(z, H=eé 5 + c.c. 2)

with (%)
P® = 1 yO(= w5, 0, @, — @) X

x E2Eyexpi(— w3t +kiz+ 20, —@;) (3)

and kj = 2k, — k,; since the polarization vectors

of &(z, 1) and $)(z, 1) are parallel, the susceptibility
13 (w;) will be treated as a scalar from now on.
Finally, we note that eqs. (1)-(3) are written in the
laboratory frame.

On the other hand, the quantum state of the scatter-
ing molecules is represented by the density operator p, '
from which the CARS polarization will be obtained.
Matters are, however, complicated by the molecular
motions. Although these can be treated quantum
mechanically for a rigorous treatment, it is sufficient
here to take classical trajectories for the molecules,
neglecting also relativistic effects. We can apply the
treatment used by Bordé and coworkers for saturated
absorption spectroscopy [14] ; we further assume that

‘ the velocities of the molecules are not changed during

their interactions with the fields (i.e. we neglect the
recoil effect) and we disregard velocity-changing
collisions.

The density operator p is thus calculated for the
class of molecules possessing velocity v ; an integration
is then performed over the velocity distribution func-
tion F(v) :

p(r, 1) = Jp(r, t,v) F(v) dv . 4

Here p(r, t, v) is the solution of the density operator
evolution equation, which is, in the laboratory frame :

a%l’(l', t,v) + v.Vp(r, t,v) + R(p(x, 1, v) — p'?) =

- ‘71 [Hy + V), pr, W], (5)

(*) The opposite convention for the time dependence of the
complex representation of vectors is used by the authors of refs. [14-
18].

(®) We use electrostatic units throughout this paper. Our formulae
are also valid in MKS, except eq. (3) where ¢, must then be inserted
as a multiplying factor to ¥® in the right-hand side.
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for the class of molecules with velocity v (3); H,
is the Hamiltonian for an unperturbed isolated mole-
cule with a discrete spectrum of eigenstates |o ),
| B >, etc... corresponding to eigenenergies ho,, hog,
etc. The Hamiltonian describing the interaction of
the molecules with the radiation fields is

V() = — n.é(z, 0

in the tdipolar approximation and is treated as a
perturbation. The term Rp gives a phenomeno-
logical representation of damping towards the equi-
librium operator p(®, the operator R operating on p
in the Liouville space. Finally, v. Vp(r, ¢, v) is introduc-
ed into eq. (5) as a result of the Galilean transforma-
tion from the molecular frame to the laboratory frame.
Because all £ vectors are aligned along the Z axis,
p depends only on the spatial coordinate z and on the
velocity component v,, so that we may write :

_, 0
v.Vp =0, 6)

The density operator components responsible for
the CARS polarization are of order 3 with respect to
the perturbation V(z).

Molecules with axial velocity v, thus give an ele-
mentary complex CARS polarization :

pP@,) = 2N Tr [p®N(w,, z, t, v,) p.&]

=2N ) pws, 2, 1, v,) pg, (M
a,p

where p®(w,, z, ¢, v,) labels the Fourier component
of p®(z,t,0v,) at frequency w; : N is the number
density, and the eigenstates |« Y, | B ), ... are assum-
ed to be non-degenerate, so that the dipole operator
p.é has a single matrix element between each pair of
states. The net polarization due to the ensemble of
molecules is :

+
P = J P,) Flv,) dv,

e ®)
p(ws, z, 1, v,) Fv,) dv, ,

=2NZB.uﬂaj

—

where we made use of eq. (4), and where F(v,) is the
distribution function for v,. For a Maxwell-Boltzmann
distribution, we have

Flv) = (Vaw ' exp — (v,/u)?, ©)

withu = (2 ky T/M)'2. Identification between egs. (3)
and (8) then yields the expression for the susceptibility

(®) The velocity distribution may either be introduced in p(©
or in eq. (4).
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1P (ws), whose modulus gives the CARS line shape (%).
We can calculate p§)(w,, z, ¢, v,) either in the labora-
tory frame or in the molecular frame ; the derivation
in the molecular frame is performed in Appendix I
for the sake of completeness. In the following, we
shall obtain its expression in a straightforward manner
by means of the diagrammatic representation.

2.2 DIAGRAMMATIC DERIVATION OF THE DENSITY
OPERATOR. — 2.2.1 Time-ordered diagrams in the
space-time domain. — The density operator at any
specified order can be shown to result from a number
of contributions ; each of these is associated with a
specific time sequence of perturbations to the density
operator, or to the ket vector | ) and its complex
conjugate { ¥ | (in the pure state case); the time-
ordering of the perturbations to |y > with respect
to those to { ¥ | is of crucial importance in the case of
collisional relaxation. It has been demonstrated that
each of these elementary time-ordered contributions
can be visualized by means of a double-sided Feynman-
like diagram, which can be used to write down directly
the associated density matrix contribution [12-17].
In the following, we use the conventions of Bordé [14-
17] ).

The time evolution of the density matrix is depicted
along two parallel vertical bars (one for each subscript
of the density matrix) with time increasing upwards.
Each interaction with the electromagnetic field is
represented by a segment pointing downwards from
a vertex if it corresponds to a term oscillating as
e~ ™" in the interaction Hamiltonian ¥(7) (Figs. 2a,
3a), and pointing upwards if the term oscillates as
e*i# (Figs. 2b, 3b). In addition, when the total field

al |8 al |8

whkl/
al IS8 al IS

a) b)

Fig. 2. — Space-time domain diagrams connecting

pUNz — v, 7t — 1,0) and p@I(z 1, 0,)
in the case of an interaction with field components e i@~ k2 (g)
and e+i(wﬂ—k1z) (b)

(*) The reasons why we consider the modulus of x®(w;) and not
its square are developed in ref. [2].

(°) The authors of refs. [12-13] use opposite conventions for
drawing the diagrams and calculating the corresponding suscep-
tibility.
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Fig. 3. — Space-time domain diagrams connecting

piz — v, 1t — 1,0 ) and plFU(z, 1, v,)

in the case of an interaction with field components e =@~k (3)
and e+1(w1t kjz) (b)

)

(n+1)(Z t l’) — 2h E eit(pjf

0

where w,; = o, — w; and y,, = R, , are respec-
tively the frequency and width of the o — $ multi-
photon transition. In eq. (10) the upper (+) sign
is taken if the segment is pointing down from the
vertex (Fig. 2a), the lower (—) sign otherwise (Fig. 2b).
The same rule is used to obtain p%*" from p%).
(Fig. 3) but with — iu,., in place of + iu,, in eq. (10)
Finally, when the segment is on the right of the vertical
bar (backward propagating wave), the signs in front
of k; must be reversed.
("“)(z t, v,) is thus obtained by multiplying
(")(z —v, Tt =1,0,) (or p(z — v, 7, t — 1, 1))
by the ﬁeld component at location z — v, T and time
t — 7 times the propagator of Pyp OVer the time T,
and by integrating the result over 7.

In CARS, one must combine two vertices at w,
and one at w, in order to get the polarization compo-
nent P® (as given in eq. 3); its e i3 dependence
implies two segments pointing down from the vertex
for the interactions with w, and one pointing up for
w,. We consider the contribution to this polarization
from the set of eigenstates |a >, |8, [y, |6
such that |o ) and | > have the same parity and
[y >, |6 ) have a parity opposite to that of |« )
and | B >. Assuming that y is connected with « by the
first interaction, and § with o or f by the third inter-
action, one finds [12, 19] that there are 24 combina-
tions of the vertices giving contributions proportional
to p{? (there are actually 48 in genuine four wave
mixing, i.e. if three distinct frequencies W, 07, W,
are applied to produce a polarization at
(0, + ] — w,)). The net susceptibility contribution
from state | o ) is then obtained by summing over all
possible states | £, |y >, | § > (including the possi-
bility of two identical states). Finally summation over
all possible | o ) states must be carried out. Only a

dr e " H@ap~ivap)T

coherence af is thus : k,,
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s made up of counter-propagating waves, the seg-

ment is on the left of the vertical bar if the interaction
takes place with the forward propagating wave and
on the right otherwise. The vertex is on the left or
right hand side vertical bar depending on whether
the left or right hand side subscript of P.p 18 changed
through the interaction. The eigenstates between
which the interaction Hamiltonian is operating are
indicated below and above each vertex. Starting from
a density matrix element p(”) at a given order n, and
assuming that a particular interaction takes place
with the electric field component E; as represented
by the one-vertex diagrams of figure 2 we obtain the
density matrix element p{;™ " at the following order
n + 1. We have :

x e HEw)) E=D+i(Ek)(z—0vz1) pg,’;,(z —v, 1,1 — 1, Uz)

(10)

few of all these terms have been shown to give appre-
ciable contributions to the CARS susceptibility [2,
11, 12]; they will be considered in turn in the next
chapter. ,

In addition to this space-time domain representa-
tion of time-ordered processes, one can also use a
representation in energy-momentum space [18, 17].
We shall see now that this latter representation allows
one to tell directly if any nonlinear process is subject
to Doppler broadening or not.

2.2.2 Time-ordered energy- momentum diagrams.
— The process of figure 2a can be represented in
energy-momentum space by the diagram of figure 4.
The molecular momenta and energy levels are given
respectively on the horizontal and vertical axes.

A
a d
|
|
|
B .
I
> 1
o |
o !
] | |
| 1
al e 4
|
Lo .
l !
b fik; momentum
l
f————
) | )
« s Feap |
‘ﬂ—k a 'B

Fig. 4. — Energy-momentum diagram corresponding to the space-
time domain diagram of figure 2a. A coherence oriented to the
left has a positive wave vector, and vice versa. The wave vector of
=k, — kg

J o' B
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Stars and wavy lines represent respectively the
populations and coherences which build up through
successive interactions; for instance, one starts in
figure 4 with a coherence o’ § labelled # (for the order
of perturbation) and ends up after one interaction
with a coherence af labelled n + 1. Field interactions
are represented by oriented straight lines going from
one energy-momentum state to the next. Their
orientation indicates which matrix element of V()
must be taken for the particular transition (u,,
in the case of figure 4). Finally, the transition is labelled
according to its rank in the time sequence of interac-
tions, i.e. n 4+ 1 in figure 4. The slope will be positive
for interaction with a forward propagating wave,
negative otherwise.

The coherence aff possesses a wavector K,, which

satisfies the relationship
n+1

k, = Z k;
j=1

where the summation is taken over the complete set
of n + 1 waves which interact with the molecule to
establish the coherence ofs. It has been established [8,
18, 21, 22] that the « — f transition under probe will
not be subject to Doppler broadening if the condition

k=0 12)

is satisfied, or, in other words, if the coherence is
vertical in figure 4. Then all molecules participate
equally and we have a true Doppler-free process.
This is the case of two-photon absorption lines as
well as three-photon absorption lines which are Dop-
pler-free under certain experimental conditions [21,
22]; for such processes, the relationship (12) had been
formulated slightly differently by Cagnac and cowor-
kers as the sum of momenta of absorbed and emitted
photons is zero [21, 22].

We shall see in the next section that the Raman
coherence ab never satisfies condition (12) in CARS
and other Raman mixing processes such as CSRS
or SRS, since k, = k; — k, is always non zero.
For forward mixing, |k, | is minimal and we have

the residual broadening presented in the introduc-
tion. Still, it is possible for such a transition to result
in a Doppler-free signal if it has a level in common
with another resonant transition. This is because a
specific velocity group, and one only, makes the two
coupled transitions simultaneously resonant, result-
ing in a Doppler-free signal superimposed on the
smaller Doppler-broadened signal contributed by all
the other velocity groups. Then not all molecules
participate, contrary to the true Doppler-free case.
This occurs in saturated absorption as well a5 in a
number of time-ordered terms in CARS, CSRS and
SRS at electronic resonance; however additional
conditions have to be met and not all terms in the
CARS susceptibility satisfy them, as will be seen in
the next section. We call the corresponding lines
selectively Doppler-free. :

(11)
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3. Application to CARS. — 3.1 CHOICE AND DERI-
VATION OF THE RELEVANT SUSCEPTIBILITY TERMS. —
The discussion of CARS is not simple. Each term in
the susceptibility calculated following the rules given
in 2.2.1 has three characteristic energy denominators,
and hence exhibits distinct spectral properties. We
recall that CARS spectroscopy is performed by tuning
w; — w, across the frequency w,, of a given Raman
transition. Further, resonant CARS is obtained when,
in addition, one or more of the three frequencies
Wy, W, Or w, is close to a one-photon transition
frequency pertaining to states |a » or | > (Fig. 1);
the problem is then to calculate the net CARS sus-
ceptibility of a four-level system. For the set of energy
levels of interest a, b, n, n' such as that of figure 1, one
calculates 24 terms proportional to p® in the CARS
susceptibility by taking | # > for the first transition ;
another 24 terms are obtained by taking | n’ ) first,
plus 24 using | n ) twice and not | n’ ) and 24 using
| n’ ) twice, for a total of 96 terms. Another 96 combi-
nations are calculated by replacing |6 > by |a ).
There are as many (192) contributions proportional to
pi9). These exhaust the entire susceptibility from the
four levels a, b, n, v, of figure 1, assuming that levels n
and »' are not initially populated.

Off electronic resonance, one finds 32 terms among
the 192 terms calculated above which possess the
Raman resonance w,, — w; + w, = 0 (16 are pro-
portional to p{® and the others to p{?). It is sufficient
to consider only the 8 terms calculated using |n )
for the first transition if a summation is performed
over all possible levels # and »n’ without any additional
condition on their energy order (including n = »’);
the diagrammatic representation of these 8 terms in
the space-time domain is shown in figure 5.

On resonance, the contributions of figures 5a, Se
become very large, and the six other contributions
can be neglected since they possess at least one anti-
resonant one-photon denominator. In addition, one
must also take into account terms possessing the
two-photon resonance ,, — ®; + w, = 0 where
,, 18 a vibrational frequency of the excited electro-
nic state.

Some of them are represented in figure 6 ; in parti-
cular diagrams 6¢ and 6d depict two terms which
are studied in ref. [12], where they are called corrective
terms because they do not possess the Raman reso-
nance. As a matter of fact, the strongest features in the
resonant CARS spectrum result from these correc-
tive terms as well as from the Raman resonant terms,
depending on the relative spectral positions of w,, ,,
w5 in the absorption spectrum. All the other terms
constitute what is called the non-resonant part of the
susceptibility, which is small and has little influence
on the line profile in a pure gas (Whether on- or off-
resonance). We shall see that, among the Raman
resonant terms, some can be selectively Doppler-
free while the others are not : furthermore, some of
the corrective terms are also Doppler-free. Since the
terms which are Doppler-free produce spectral fea-
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Fig. 5. — Diagrammatic representation in the space-time domain of the Raman resonant contributions to % (w;) calculated by taking n
first : a-d, contributions proportional to pY; e-h, contributions proportional to p5. The corresponding three energy denominators are
indicated under each diagram. The other Raman resonant contributions are easily obtained by (1) interchanging n and n’, or (2) replacing »’
by n, or (3) replacing n by n’, in each of these diagrams. )
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Wt n-Wy+Wa+(ky-kp) - i¥on
Wng-w3+k3v- iYna
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Fig. 6. — Diagrammatic representation of four contributions to %x®(w,) having the resonant denominator (@py — w1 + ®,). In this
figure n’ and n are imposed by the resonance condition Opy — ©1 + @, = 0 (similar to the condition on @ and b for figure 5). The main
diagrams are (a) and (b) ; one should also consider all diagrams derived from these by (1) interchanging a and b, or (2) replacing a by b, or
(3) replacing b by a. As an example, diagrams (c) and (d) are obtained from diagrams (a) and (b) by interchanging a and b.

tures which are inherently stronger and narrower,
we have the important consequence that the reso-
nant CARS spectral content at low pressure can be
quite different from that at high pressure. There are
indeed terms (not shown in Figs. 5, 6) which were not
considered in the collision broadening limit [12]
and which can become important at low pressure if
they are selectively Doppler-free (such as Raman anti-

resonant terms possessing the denominator

Wy, + O — @, + iy,,) .
In this paper, we shall restrict the discussion to the
terms represented in figures 5 and 6. To illustrate the
use of the diagrammatic representation, we shall

now write the expression for the term associated with
diagram (a) of figure 5 using eq. (10) :



tp E gfer
(3) = jonb 717
PN ws, 2, 1, v,) 1 h

X € 7

0

LINE SHAPE AND DOPPLER BROADENING IN RESONANT CARS 825

@
J‘ d‘C1 e—i(w,.ra—-iv,.va)n e—-iwl(t—n) X
0

. —ilﬂz 2]
+ik1(z—uzr1)lﬂbn EZ € j~

dTZ e—i(wba—iyba)rz e+iwz(t—t1—‘r2) e—ikz(z—vz(rl+12))

in, E e [
n —i(®Wna = iYna —i —TT T +iki(z—vz(t1 FT2t 0
X “2h J‘O‘d‘ciie i(w; iy )tse iwit—t1— 12 ‘Cg)e iky(z—vz(t1 +12F13)) X pza)' (13)
Integrating over t,, T,, T3 and using eqgs. (3) and (8) we obtain :
+ o0
X(53a)(w3) = h_ } Npiz?z) Han Ky Mbn unaj dvz F(vz) x
- ®
1 1
X - - X - X - (14)
Wyrg — w3 — Waa + k3 v, Wy, — Wy + Wy — Vba + (kl - k2) U, Wy — w; — Wha + kl U,

where the Doppler shifts on field frequencies appear explicitely.

The other terms can be calculated in a similar way.
In most cases, a resonant CARS line is due to a double
or triple resonance occurring in one single contribu-
tion to y®(e,), and the integration over v, has to be
done in each specific case. We shall consider the diffe-
rent cases in turn, starting with the simpler case of
off-resonance CARS.

3.2 OFF-RESONANCE CARS. — We consider the
above mentioned eight terms possessing the Raman
resonant denominator (Fig. 5). In these contributions
the frequency and v, dependence of the one-photon
denominators may be neglected over the tuning range
corresponding to the Raman resonance; we then
arrive at the following expression for the resonant
part xg of ¥ (ws) :

F(v,)

z

Yy _ A(0) .ptoo
XR=NMKXJ do

with :

W,, — W1 + W, — iy, + (kg —ky)v,’

Han' Ky

135)

_ Han' Ky
K=2 (cu . — O3 +

n,n’ n

The integration over v, in (15) is the convolution
product of F(v,), which is a Gaussian, with a complex
Lorentzian ; this product can be expressed in terms
of the complex error function w(() [23] such that :

+ o0 —92
e —
L Sy =0 (9
with { = & + inand 6 = v /u.
From (15) and (16), one obtains :
o9 — oY Jr .
= NDe __Thb o K ox ———iw* ,
XR h3 x x (k1 _ kz) u w (Cba)
17
with (%) (17)

Wy, — W1 T 0y t g

(ky — k) u

Cba = = éba + iﬂba :

The CARS line profile is thus given by | w*({y,) |

(5) If the opposite sign is chosen for &,,, w* ineq. (17) is replacerd.
(

by w since w*(() = w(— {®).

S

S~

( :ubn Hng
Wyrp + w3 Wy, — Wy

:ubn Hna
+ W, + w2> )

versus w; — ®,, Which is tabulated or can be obtain-
ed numerically. Figure 7 shows a numerical calcula-
tion of | w*((,,) | versus &, in the limit of zero homo-
geneous linewidth (17,, = 0); also shown in the figure
are the real and imaginary parts of w((,,). The real
part is purely Gaussian with full width at half maxi-
mum (FWHM) Av, = w,,u+/In 2/mc. Let us note
here that this Gaussian is precisely the profile of the
lines obtained in forward spontaneous Raman scatter-
ing. The CARS lines are not Gaussian because of the
additional dispersive part of yg [9]; from figure 7,
the FWHM is about 1.78 Avp,

3.3 RESONANT CARS. — Quite generally, the
stronger features in resonant CARS spectra are pro-
vided by a double resonance (in some cases, a triple
resonance) occurring in one of the contributions
depicted in figures 5a, Se and 6. Depending on the
contribution which is being probed, the line profile
is best interpreted by fixing either w, or w, and by
varying the other, so that one of the energy denomina-
tors remains constant during the spectral scan while
the other two vary.
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3.3.1 Term depicted in figure 5a. — It has been
shown previously that when ; is set near a one-
photon absorption w,, of the molecules and w, is
varied about w, — w,,, three families of lines are
found in the CARS spectrum [2, 11, 12]. They corres-
pond to the three possibilities of double resonance in
the main susceptibility term 1SN ;) (Fig. 5a) which
is proportional to population factor P9 and whose
expression is given by eq. (14). These double reso-
nances have been labelled

@ (wl = Wpy, W) — Wy = wba) >
/ \ (601 = Wpyy W3 = Wyp)
I - C1)2 = a.)ba’ CU3 = CUn’a) b

(o,

Ile (arb. units) ~

\ '
7

® and have been called respectively laser-enhanced
o Raman lines, electronic lines and anti-Stokes-enhanc-
ed Raman lines. Note that the third type of resonance
implies w; = w,,, and therefore that the set of eigen-
states [a >, |b ), |n), |n' ) which gives the largest
(N contribution to the susceptibility is generally diffe-
rent from that of the first two types.
wl N

/ Fig. 7. — Off resonance CARS line shape in the Doppler limit.
— (1) plot of the imaginary, dispersive, part of w(&y,) versus &,,;
-3 -2 - 0 L 2 3 &he (2) plot of the Gaussian real part of w(&,,) ; (3) plot of | w*(&,,) |-

For the laser-enhanced Raman lines, the first denominator in (14) is large enough for its v, dependence to

. . 1 I 1
be neglected, and we obtain, using % = (2 3

Hapnr Py Hpn Hng 1 1
(3) = N, (0) X
X5a(w3) Paa ﬁs(a)n’a - W3 — l.’yn’a) kl(kl - kl) uz a:;:a._ :‘ka

+ o0 _ 02 1
x ap &P ( L ) (18)
w Jro\G+6 g+

with {,, as defined for eq. (17) and

W,y — @ + By .
e = = = bt

The integral in (18) is the sum of two convolution products which can be expressed in terms of two complex
error functions (eq. (16)) :

— 9 * — ¥
X(53a)(w3) — Np(o) :uan’ :un’b :ubn /‘tna x ( l\/;) w (Cba) w (Cna) .

. X 19
“ 0, — @y — i)l — k) < e (19

Eq. (19) is evaluated numerically ; for the singularity {pa = (.0 We use the following formula :

W (Chr) — w*((,,)
—{na C* ek
ba na

=Wl = — 2il\/n — 205, wH(,,) .

l1m§ba

W) — w* ()

% . rk
=ba Cna

A, l0y,) Avpy,ie. &, = 4 \/ In 2, are shown in figure 8 ; these curves were obtained for an homogeneous width
V= Vna = Vpa = T Avp x 107% The velocity group which makes the two coupled transitions simultaneously

Plots of

versus (,, for detunings (w,, — ®,)/2 n going from 0, i.e. (=0, to
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(arb. unjts)

D

\
)

4 N
o \\

[] 1 2 3 £y

Fig. 8. — Laser-enhanced Raman line associated with diagram (a) 2./In2 (4), 4./In 2 (5). We measure from the graphs a FWHM
of figure 5. We took Y = VYua = Vba = T Avp x 10™% and the follow- of 2.21 Avy (curve 1), 2.30 Avy (2), 2.40 Avy (3), 2.33 Avy (4),
ing set of values for £, : 0 (curve 1), /In2/2(2), ./In2(3), 2.04 Av, (5). The arrows indicate the positions of the line maxima.

resonant is here v, = — (w,, — w,)/k; = — &, u. The spectral contribution of molecules with velocity v,
is located at w; — w, = w,, + (k,; — k,) v, or, equivalently, at £, = ¢.o- We can see in figure 8 that there is no
discernible resonance at this position and that the CARS line is clearly subject to Doppler broadening ; the
FWHM is more than twice that for forward Raman scattering.

The line maximum is only slightly shifted from ¢,, = 0 towards ¢ha = &uar asaresult of the stronger, although
not dominant, contribution of the velocity group Vo-

Quite similarly, the integration of (14) leads to the following expression for the electronic line (0, ~w
W3 = ('Un’a :

ha’

o My — iz w*(¢,.) — w*
X(53a)(a)3) — pr,g) 5 Han Uy b .ubn :una _ X ( \/—2_) x (Cn a) (Cna) , (20)
i (wba - Wy + Wy — lyba) kl ké’: u r’r’a - ;ka

with

Cn’a = (wn’a - 603 + ilyn’a)/ké u = én’a + inn’a .

w*(é’n’a) - w*(Cna)
*

with reduced variable {,, replaced by {,.,. As a consequence, the width of the electronic line is of the order of the
full Doppler width of the one-photon electronic absorption line. It is larger than that of the laser-enhanced
Raman line by a factor k}/(k; — k,). We also note by comparing (19) and (20) that the maximum intensity of
the electronic line is smaller than that of the laser-enhanced Raman line by the same factor.

For the anti-Stokes-enhanced Raman lines one obtains from 14) :

Kan' By Kpn Mng (— i\/T W*(C a) - W*(Cn’a)
15(@3) = NpQ) — T \/—) 5 X —— @1y
B, — 0y — iy, (kg — kj) kyu (o —

n'a

The line profile is given by the plot of versus £,,, and is identical to those of figure 8

here the line shape is expected to be more complex than in the two above cases because both ¢ e and (., vary
during the spectral scan. Indeed, in the limit of pure collision broadening this type of line shows two maxima, i.e.
one at w; — w, = wy, and the other at w; — w, = Wy, — W; + O, (ie. w3 = w,,); when W; = ,, the
two maxima merge resulting in a stronger and narrower line.

W (lha) — W) | . 0 =0 h i f 9 Infi 9
Plots of G- in the Doppler limit (7,, = #,, = 0) are shown in figure 9. In figure 9a,

which corresponds to a situation of experimental interest, the line shape has only one maximum very close to
W; — @, = Wy, The other maximum, which we expected to be at ¢,, = — (@, — 0)/ky — k,)u = — 3.3,
is too weak to be seen. This is due to the Doppler broadening affecting this type of line. The broadening of the
component at £, = 0 (Raman resonance) is of the order of 2 Av, while that of the other component (electronic
resonance w; = w,,)isk3/(k; — k,) times larger ; as a result the intensity of the electronic component is a factor
of k3/(k, — k,) times lower than that of the Raman one, i.e. 14.3 in the case of figure 9a. In figure 9b we have
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(arb. units)
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Ixh(w,)] (arb. units)
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nlXsd
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\\ N
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a) b)

Fig. 9. — Anti-Stokes-enhanced Raman lines associated with ~ which gives ky/(ky — k;) = 14.3. We measure for the FWHM

figure 54, USINg Yyy = 75 = 0. () We took @,;, — w2t =2Av,. 228 Av,. (b) Same CARS line as in figure 9a, but taking :

We also took values of w, and w,, corresponding to the iodine (@, —®)/2 ®=2.25 Avp, ©;=16955.5 em™?!, w,,=33911cm™!
experiment of ref. [11] : o, = 16955.5cm™?, w,, = 1260cm™!  to show the splitting discussed in the text.

0.5

taken another set of parameters so that this latter factor is now 1.5 ; the splitting of the line into its Raman and

electronic parts is then clearly visible.
To be complete, we shall now calculate $)(w;) in the case of a triple resonance. Using

I 1 1) 1 1 N 1
abc b —al\ac be _(b—a)(c—a)a+(a—b)(c—b)b (c—ay(c—-bc’

we obtain from (14) :

0) :uan’ /’tn’b :ubn :una (l ﬁ) x

i3) = N,
15a(©3) Paa N kitky — kj) k3 u?

WL, W) W) > .
" <(¢z; e —m e e - G ome.w) P

This function is also obtained numerically. For the limiting case {,, = {,, = (., it can be expressed in
terms of the second derivative w”({) of the complex error function :

:uan’ :un’b /'lbn :una l \/E w"*(Cn’a)
SN w,) = — Np@ . 23
154(@3) Pad T heyley — k) 5 w2 =

Let us note here that when one of the reduced variables | (., | or | {,, | or | {,, | is large with respect to its
associated Doppler broadening parameter (respectively k3 u, ky u, (k; — k3) u), eq. (22) transforms respectively
into eqs. (19), (20) or (21) obtained above for the 3 types of double resonance. For instance, if we have

|Cn’a|>kguZ|Cba|’|Cna|

we obtain from (22) :

3) = (0) /'lan’ :un’b lubn :una . W*(Cn’a) W*(C,,a) _ W*(Cba)
152(@2) = o e ks ﬁ’((c:ﬁa)z Taome. G-meo) @

*
which becomes using lim_, , %—g—) =0:

X(53a)(w3) = NP(O)

Ean Foy Hom P —iJn ) W (Coe) — W)
“ Bk, — ky) kv \w, D

— — * __ %
‘a W3 z;ba na
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which is identical to eq. (19) obtained previously for the laser-enhanced Raman line. The plots of [ 1) (w,) |
as given in eq. (22) are shown in figure 10 ; the FWHM is about 2.6 Avy, for the two cases shown and these triple
resonance lines are clearly subject to Doppler broadening. We note also that the line profile, which has two
maxima in the collisional broadening limit for the same reason as for the anti-Stokes-enhanced Raman line,
has here also only one maximum near ¢, = 0.

These results show that the existence of one specific velocity group v, giving a larger signal than the other
groups is not a sufficient condition for a nonlinear process to be Doppler-free. The pertinent question is as

follows : is the signal due to velocity group.r, and nearby velocity groups within the homogeneous width really
overwhelming or not ?

(1) |

-

(2)

(03), (arb. units )

(3
Xad

|

05 / \

|
T
y 1

0.2

-3 -2 -1 0 1 2 3 £,

Fig. 10. — Triple resonance assocjated with figure 5a in the Oy — @y = 0 (curve 1), (w,, — w)2n = 2A§D (curve 2). We
Doppler limit (4,, = #,, = 1, = 0), with $w =0 and with measure for the FWHM 2.64 Av, (1) and 2.57 Av,, (2).

3.3.2 Condition for a multiple resonance line to be Doppler-free. — Whether the contributions of the velocity
groups add in phase or not in the susceptibility will give the answer to this question. Quite generally, we have
for the contribution to y®)(w,) of a given time-ordered process / :

+ o0 + o0
1 (w,;) = f do, F(vz)fjj dty dr, dty f(1q, 15, 175) e@Cae2)
- 0

0

where ¢(v,, 14, 1,, 15) is the v, dependent part of the phase of the integrand ; this phase is a linear combination
of the time intervals t; between two successive interactions, the coefficients of which are the k() of the coherences
established during these time intervals, viz. >

3
P(v,, Ty5 Ty, T3) = Z k;’} 70, , (25)

i=1

where, if a given interaction (j) is hi ghly nonresonant, the effective time 7; for which one has a non zero contribu-
tion to the integral is very short so that the contribution from 7; to eq. (25) can be disregarded. o(v,, 14, 7,5, T3)
is the phase of the contribution of velocity group v, relative to that of the contribution of velocity 0 for each set
of time intervals (t,, 7,, 75). One simple way to tell whether the velocity group centred at v, gives an overwhelm-
ing contribution or not is to take the slowly varying function outside the v, integral and replace it by Flvg) = F:

+ o0 + o0
1 (w,) = FJ do, fff dty dt, dty f(14, 15, T5) €002t (26)
—© 0
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In eq. (26) the integration over v, can be performed either before or after that over the t’s. We shall present

these two derivations in turn.

a) Integration over v, performed first. — Combining eqs. (25), (26) we obtain :

13 (w;) = 2 nF J.Jf dr, dr, dty f(14, 15, T3) 5( Y kG ) ) 7

The susceptibility x{*(w,;) can be non zero only
if sets of time intervals such that

3

Y k7, =0

i=1

can be found. For such sets, the velocity groups contri-
bute in phase to x¥(w,) since (v, 74, 7,, 13) = 0,
and therefore interfere constructively with the domi-
nant contribution of v,, resulting in a Doppler-free
line ; on the other hand, if no such set of time inter-
vals can be found, we have y{*(w,;) = 0, which means
that taking F out of the integral was not justified and
therefore that the line has the full Doppler width.
Let us note finally that ¢(v,, 7,, 7,, 73) can be readily
written down from the space-time domain diagrams
using the rule given in eq. (10), so that it is easy to
determine whether a time-ordered process is Doppler-
free or not without machine calculation. In the case
of the above-mentioned laser-enhanced Raman lines,
(v, Ty, T, T3) 1S obtained from eq. (13); we have
o(v,, 15, 73) = (ky 3 + (ky — k,) T,) v, Where time
7, needs not be considered because the detuning

i=1

(w,., — ws) is very large, as was stated in the discus-
sion of eq. (25).

Since both k, and k; — k, are positive, ¢(v,, T3, T,)
cannot be zero, which confirms that the line is Doppler
broadened.

b) Integration over the T’s performed first. — Inte-
grating eq. (26) over the s leads to :

+
1N wy) = F j dv, g(v,) (28)

where g(v,) is the product of three complex Lorent-
zians (see for instance eq. (14) in the case of figure 5a).
The residue method is then used to perform the inte-
gration over v,. If the relevant poles of g(v,) (two in
the case of a double resonance, three for the triple
resonance) are in the same half of the complex plane,
we obtain a zero result which means that the line has
the full Doppler width. The condition to have a
Doppler-free signal is therefore to have poles in both
halves of the complex plane. This condition is directly
visualized in the energy-momentum domain diagrams
(Fig. 11); as a matter of fact, it can be demonstrated

A *
n n—
?“ 3 § n ; 2
2 P 2 3 \
] | : w |
b 3 2 W
b r' b ¢ L
| | | I 1
| | [ | |
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h 1 | | 1 h 1 |
| ! | | | I |
I ! | : 3> — I |
0 fi(ky-kp) fike Rk filko-kq) O ’ﬁkz Ak,
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(a) (b) (c)
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3 3 % 8 Zd
N §n ] g n
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Fig. 11. — Energy-momentum diagrams corresponding to the space-time diagrams of figures 5, 6 ; a, b correspond to figures 5a, Se and

c, d, e, f to figures 6a, 6b, 6¢c, 6d, respectively.
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that the above-mentioned condition is equivalent to
having, for the transitions which are near resonance,
coherences with wave vectors pointing in opposite
directions along the momentum axis [18].

c) Intensity of Doppler-free lines. — The two
conditions necessary to have Doppler-free lines, viz.
existence of a selected velocity v, and coherence requi-
rement (as discussed in 2a, 2b above), do not tell by
any means what is the strength of the Doppler-free
feature. This strength depends upon the value of v,
compared to the mean velocity u, through F(v,)
in eq. (26), and is approximately proportional to the
Boltzmann factor e~ ®/®* It also depends upon the
relative values of the k{}’s. This aspect will be develop-
ed through several examples in the following sections.

3.3.3 Term depicted in figure Se. — The Raman
resonant term proportional to pi2’ is depicted by the
diagrams of figure Se and figure 11b. In the same
manner as for diagram S5a, the dominant features
pertaining to this term are provided by double reso-
nances (a triple resonance is also possible). They will
be best interpreted by holding w, near w,, and tuning
w, across w, + w,,. When e, is varied, one then
observes w,-enhanced Raman lines (w, — w, = w,,,
w, = w,,) and also electronic lines (w3 = w,,,
w, = w,;,). There are also anti-Stokes-enhanced Ra-

man lines (w; — w, = w,,, ®,, = w;) which are

(9
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Fig. 12. — w,-enhanced Raman line associated with diagram (e)
of figure 5.

associated with a set of levels (a, b, n, n") different from
that of the other two double resonances. We can tell,
just by looking at diagram 11b, that all these lines
but the anti-Stokes-enhanced Raman line, are selec-
tively Doppler-free. As an example, we have perform-
ed a machine calculation of the profile of the w,-
enhanced Raman line (Fig. 12). The latter arises from
the following term in the susceptibility :

i/

lan w* +w
X(53e)(w3) — N:(_)_bsl % :Lan /“nb :ubn :u.na % . % (CL:) (Cnb) , (29)
h wn’a — W3 = Yy (kl - kZ) k2 u Cba - Cnb
with
Wy — Wy + 1Yy .
Z=’nh = k2 u = énb + ”’I,.b .

The profile of figure 12 has been obtained with
parameters Y= yna = ynh = yn’a = ’yba = 2 n AvD/40
and ¢, = 0 (curve 1), \/In 2 (curve 2) and 2 (curve 3).
For the three cases, the maximum of the selectively
Doppler-free double resonance is at

Cpa = Cmp = Eo = — vofu

as is expected from eq. (29). We measured the FWHM
to be 2\/5 y/2 =, which is the expected collisional
broadening (i.e. the width of

oa)” ! |) :

this confirms that the double resonance is Doppler-
free. We notice that curve (3) has a second smaller
and broader maximum near &,, = 0; this resonance
can also be predicted from the expression for x§)(w;)

as given in (29). Using
i/m
C 9

| (wp, — @1 + Wy —

lim w()y oy =

we obtain from eq. (29) for ¢, ~ 0, &, = &, > 0 :

X(53e)(éba = 0) =
pgw(l))) luan’ Hyrp fubn Mna/ﬁ3

= N - X
(a)n’a - W3 — I’yn’a) (wnb - Wy — llynb)
SN
&, — kpyu" b

which is exacfly the expression for an off-resonance
CARS Raman resonance. The resonance at §,, = 0
is therefore a Doppler-broadened single resonance.
Itis a general feature of third-order nonlinear processes
that when £, + 0, the line shape arising from a
single time-ordered process (i.e. a single diagram)
contains two maxima : one selectively Doppler-free
double resonance and one Doppler-broadened single
resonance (this is discussed in the general case in
Appendix II). In the case of curves (1) and (2) &,
is either equal to 0 or very close to 0 and the two
resonances are mixed.
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We can estimate the strength of this type of double
resonance in the limit of a very small collisional
broadening parameter y. The maximum CARS line
amplitude A4, is obtained from eq. (29) :

A Npi%) W*(Cba) + W(Cnb)
b o« 2 * °
(ky — k) kyu Cbz.z — L
with
Cp = Epa = — volu . (30)

Adding the condition y < ki; u (i.e.n,, ~ n,, ~ 0),
we have w((,,) ~ w((,,) and

w(lyo) + W, = 2 Re w((,,) ~ 2 e~ @ow?

and thus :
2 e~ (vo/u)?

A (0)
» € Npyy ik,

(31

For the sake of simplicity, we have assumed equal
relaxation rates y,, = y,, = 7, which is certainly not
universally valid. Different rates can be easily restored
in eq. (31) (see for instance eq. (I1.11) of Appendix II).

The line strength is therefore proportional to the
Boltzmann factor e~ ®o/®* and inversely proportional
to the collisional width y, and to the Doppler width
of the one-photon absorption.

For comparison, we can also calculate the strength
of a Doppler-broadened CARS double resonance
under the same conditions. We consider, for instance,
the double resonance (w,, = w;, w,, = 0; — w,)
associated with figure 5a. We have found in section 1
that the line maximum is at ¢,, = &,, = 0 its ampli-
tude 4, is, using eq. (19) :

W*(Cpa) — W*(C,a)

G = G

Npi?
— k) ky u?

. €
(ky

Eba=&na=0

Using again the condition y < ki, u, we have :

(0)

oc NP | Wy
Tk, — k) kyu? ba

~

Eba=0,1ba >0

Npid
N (ky — k) kg u?

7

We can now compare the intensities of the Doppler-
broadened line and the Doppler-free line using egs. (31)

(32)
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and (32). Disregarding the magnitudes of the transi-
tion moments and of the detuning in the third deno-
minator, we obtain under exact resonance conditions

(ina = 0’ énb = 0) :

(0

aa

A, _ Pf;(t)v) (ky — ky)u
ATV TS

which can be expressed in terms of the approximate
widths 2 Av, and Av = \/ 3y/m of the Doppler-
broadened and Doppler-free lines, respectively

.Ab:ﬁxﬁﬁXZAvD’V]gﬁ&xZAvn‘

A, oD 2

a

Av PR Ay
(33)

In2

Finally, we note that, when performing CARS
spectroscopy with o, fixed near w,,, the (v, = w,,
®; — w, = w,,) line proportional to p{? (Fig. Se)
is located at the same spectral position as the (w; = w,,,
®; — w, = w,,) line proportional to p{? (Fig. 5a);
this is one case where two terms in the susceptibility
contribute to the same line in a CARS spectrum.
Although pf?’ < p© in most cases, the p{9 contribu-
tion will appear enhanced since it is Doppler-free
contrary to that pertaining to p{9 ; this will be seen
in gases and plasmas at low pressure and high tempe-
rature. The triple resonance associated with diagram
Se can also show up in such spectra at the location
of the triple resonance associated with diagram Sa
(when such a triple résonance occurs).

3.3.4 Terms depicted in figure 6. — Looking at the
two time-ordered processes giving a contribution
proportional to p® (space-time diagrams 6a, 6b
and energy-momentum diagrams 11c, 11d) we notice
that diagram 11d can give rise to Doppler-free features
which are the double resonances (w,, = ,,
Opy = 0y — @,) and (o, = ©,, ©,, = w,); the
last double resonance (w,, = 0, — ©,, ©,, = 0;)
is Doppler-broadened since the wave vectors k2)
and k() of the corresponding coherences are point-
ing in the same direction. Concerning the last two
time-ordered processes (space-time diagrams 6¢c, 6d
and energy-momentum diagrams 11e, 11f), only that
depicted by figure 11f gives Doppler-free features.
These are the (0w, = w,,, ©; = 0,,) and (0, = o,
w; — W, = w,,) double resonances, as well as the
triple resonance.

3.3.5 Strength of a selectively Doppler-free triple resonance. — Quite generally, we have for the strength of -

a Doppler-free triple resonance in CARS :

1

Np©®
|1y | = ==

+ o0
M va dv, F(v,)

Ao, + kv, + iy) (Aw, + k, v, — iy) (Aw, + kv, — iy,) |

(34)

where .M is the product of four transitions moments ; s, 7, r indicate the successive coherences established
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through the three interactions ; Aw is the corresponding detuning ; y and k are the damping factor and wave
vector of the coherences, respectively. We can express eq. (34) in terms of the complex error function (eq. (16)) :

) )L(m

@) =T F e\ -G - G-0C¢-0 -OHE6-0
with Using eq. (36), we arrive at the conclusioﬁ that the

_ . Ao+ iy
C—é+n1————ku .

The strength A4 of the line is given by the value of
| #®)(w,) | at the location of the line maximum, which
isgivenby & =¢&, =8, = — vo/u When there exists
a velocity v, that makes the three denominators in
eq. (34) simultaneously minimal. Generalizing the
calculation performed in section 3 for the double
resonance (; — W, = Wy, Wy = 03), W obtain
in the limit y < ku :

p(g) — (vo/u)?
A =N=22| M9 M —— X
IO —

ks
m+mm+wy“®

X

Here again, one could easily derive a similar formula
with different collisional relaxation rates.

\

»

n
% excited electronic state
n

W,y Wy Wy | Wy | Wyl Wy
b — b

% ground electronic state
— a

(a) (b)

a

Fig. 13. — Energy level diagrams for SRS and CSRS. o, and o,
are the pump frequencies. (2) SRS : one either measures the gain
on the signal at w,, or the loss at , ; (b) CSRS : the coherent
signal at o, = 2 w, — ®, is monitored.

w2
B e D (I
w2 (.01/
n n
w|~4,\ wy ~P
a a a rcl

Wan+ Wy —ky V=i Yan . Wan+w - ky ¥=iYon

Wop+ Wy-Wa-{Kky-kl-iyap -i¥nn .
Wop - Wa tkp V- 1Ynp Wop~ Wa +kp U174y
(a) (b)

amplitudes of the Doppler-free CARS triple reso-
nances (diagrams, Se, 6b, 6d) all scale as

e—(vo/u)2 k2
uy (ky)

The expression for the amplitude of any double
resonance can also be obtained from eq. (35) using

lim K(ZZ—) = 0.
z

Z—> 0

4. Other third-order nonlinear processes. — Dop-
pler broadening in three-level systems has been exten-
sively studied by Feld and Javan [24] and Hénsch
and Toschek [25]. We here use the diagrammatic
representation to analyse the lineshapes in Stimulated
Raman Scattering (SRS) and Coherent Stokes Raman
Scattering (CSRS) and to identify the terms in the
susceptibility which are not subject to Doppler
broadening. The resonant transitions involved in
these two processes are vizualized in the energy level
diagrams of figure 13.

In resonant SRS, w, is tuned near the one-photon
absorption frequency ,, and @, is tuned across
w,; — O,,; the Raman gain on the field at w, is moni-
tored and scales as the imaginary part of the Raman
susceptibility y®(— w,, w,, ®;, — w,). The space-
time diagrams depicting the main contributions to
¥®(w,) are shown in figure 14 where the correspond-
ing energy denominators are also indicated. One
recognizes the coherent Raman part (diagrams a and
d) and the hot luminescence part (diagrams b and c)
of the susceptibility [13, 26]. The strongest lines in the

— == n b-——=——===-=—nN b— 1+ —
) -
Wz’/ wy
n a T2
_____ Wi U] |-
n T3
“”/u a “’2{ b

Wap=Wa + k¥ = iYnp '
wap - wa+wy = (ky-ka)U-iyg
Wy - Wat kp =17y

Wha - Wy + kg =iy,
=Y
Wpp - W2 +k2 v'_')’nb

(c) (d)

Fig. 14. — Diagrammatic represeﬁtation of the main contributions to ¥®(«,) ; diagram (a) is called frequency correlation term in ref. [25],
diagrams (b) and (c) correspond to saturation terms, and diagram (d) is a dynamic Stark effect. One could also obtain additional contri-

butions by replacing one n by n'.
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n b —— - - ——— = n b ——— - - — - — - — n b —-g—
T
e e o IO o A N
wy \\ ’ 2
P i i A b ——F —
w2 o wg/ . T3
ok B N S, Wi N o L[ _Y
w2 /
a a : a a a a
wan.+w,—k1v-iyan. won,+w,—k,v-iyan. wna‘“’z*’kz’"iha

Wap + Wy = Wy = (ky-kplu-iyg, wpm-wa+w, -(k,-kz?v-iym,
Wop ~2Wop+Wy +kUu=-1y,,

Wop —2Wo+W+kYv-iy,,

(a) (b)
n b-——— == — == n
w; =] ——___"—__—_——wz—’/
a
wi
~ - - ———7v
) w
n w? \,\‘
I i
b b b

Wprp - Wa + K U =iy .
Wop ~Wp +w - (ky-kplu-iyy,
Wnp -2w2+w1+ kkv' 'Yab

(d)

Wopy ~ W + Wy

Won+ Wi-k W -iypm
_(ki"kzh"_'ynn’ w
Wpp - 2Wotw+ kU -1y

(e)

Wap-wa +wy = (k=ky o=y .
Wop - 2Wp +W +kU-iy,,

(c)
b - ——— = = = —— n b — 1:‘1

wg’/
n' | T2
S0 s N S SN
n’ ifs
b — — - — R -

wz/
b b b

wab-Wa + kU -iyy,
nn'" w2+w1_(k1—k2)?-'ynn’
Wb - 2Wat Wy + KU1y

(f)

Fig. 15. — Diagrammatic representation of the main contributions to x®X(w,) 1 k4 = 2k, — k,.

gain spectrum are provided by triple resonances, in
contradiction with CARS where triple resonances are
only fortuitous.

We have calculated ¢(v,, 1;, 75, 73) (see eq. (25))
for each of these diagrams :

vy, Ty, T2, T3) = (— ky 73 — (ky — ky) o +

+ kyty)o,, (a)
P(v,, T4, T3) = (= ky 13 + ky 1) 0,5 () 37
o(v,, T4, 73) = (ky 73 + ky ) 0, s (©
o0, Ty, T4 T3) = (ky 13 — (kg — k)T +
+kyt)o,, (d)

where a, b, c, d refer respectively to diagrams a, b, c,
d. For all the diagrams but c, there exist sets of time
intervals (t,, t,, 73) such that ¢(v,, 7, 75, 73) =0,
and the triple resonances associated with them are
therefore Doppler-free.

CSRS is a three-wave mixing process very similar

(v, Tys Tp, T3) = (—kits

— (ky —ky) T, + ky )0,
P(v,, Ty Tpy T3) = (kyty — (ky — ky) T, + ki) 0,

to CARS. The spectrum is representative of the
variation of the modulus of the CSRS susceptibility
13— w,, @, w0, — ) versus (w; — w,) Where
w; and w, are the pump frequencies (w, < w,)
and w, = 2 w, — o, is the frequency of the signal.
The resonant. CSRS spectrum can be obtained with
o, set fixed and w, varied or vice versa, and the domi-
nant features in the spectrum result from double
resonances (or triple resonances when they exist)
occurring in some of the terms of the susceptibility
% (w,). The main ones are shown in figure 15. Dia-
grams a and d visualize terms possessing the Raman
resonant denominator ,, — w; + w,; the other
four diagrams give terms possessing the two-photon
resonance w,,, — ®, + w, where w,,. is a vibrational
frequency in the excited electronic state. The spectral
analysis of these resonances is similar to that of CARS
and we shall not go into a detailed discussion of them
here. Calculating ¢(v,, t,, 75, 73) for each diagram
of figure 15, we obtain : '

for diagrams a, b, e,
. (38)
for diagrams c, d, f,
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which shows that all six terms depicted in figure 15
give rise to Doppler-free lines. From the diagrams of
figure 15, it is easy to obtain the line shape from the
general expression as given in Appendix IT (egs. (IT.7)
and (I1.9)). For each of them, the line shape contains
the two resonances (Doppler-free resonance and

LINE SHAPE AND DOPPLER BROADENING IN RESONANT CARS 835

Doppler-broadened single resonance) as discussed in
CARS for diagram Se. We note here that the enhanced
Raman line of intensity proportional to the lower
vibrational population (diagram 15a) is Doppler-
free contrary to the enhanced Raman line obtained
in CARS (diagram 5a). The corresponding term in

Xwy) is

1

+ o0 !
fuan’ /'ln’ H n luna .
e I

X
Oy — @y + ky v, + iy,

1

X

Wy = 0 + 0y + (ky — k) v, + iy, w,, — Wy + kjv, — iy,

The authors of ref. [25] have suggested that the
signs of the y’s in this term should all be positive. If
such was the case, this enhanced Raman line would
be Doppler-broadened ; this is seen readily using the
residue theorem as the three poles would lie in the
same half of the complex plane. An interesting point
is to compare the amplitudes of the above six Doppler-
free features in the limit of negligible collisional
broadening (y < ku). The general formulae given
in egs. (34)-(36) for the maximum amplitude 4 of
a Doppler-free CARS triple resonance can still be
used here, because the expressions for 1 (w;) and
1 w,) are similar (compare for instance egs. (39)
and (34)). The values for kg, k., k, in eq. (36) can be
inferred from eq. (38). In the case of diagrams 15a,
b, e, we have k, =k, = 2ky — ky, k, =k,
k, = k; — k,, so that the strengths of the features
associated with them scale as :

2 exp — (vy/u)? 2ky — ky

a,b,e uyz 2 k%

A

For diagrams 15c, d, f, we have ki =k, — ks,
k, = k,, k, = k/, and the strengths of the correspond-
ing features scale as :

2exp — (vo/u)® k, — k,

A ,
c,d.f uy? kik,

which is about (w,,/w,,) times smaller than that of the
former features. Here again, the strengths Aapes
and 4, could be calculated in the general case of
distinct collisional parameters Vua> Vup> Vogr-- @S 18
done in Appendix II.

5. Conclusion. — We have analysed the theory
of CARS at electronic resonance in gases under condi-
tions of mixed line broadening. We used two time-
ordered diagrammatic representations of the -non-
linear susceptibility terms. A representation in the
space-time domain, associated with a proper set of
diagrammatic rules, has enabled us to perform a
direct calculation of the most important terms, from
which the line shapes could be calculated. A repre-

(39)

sentation in the energy-momentum domain was also
used for a rapid identification of those terms which
are associated with Doppler-free time-ordered pro-
cesses.

This analysis has led us to several important
findings :

(i) The CARS susceptibility term which dominates
in the collision regime is not Doppler-free under
double resonance condition and even under triple
resonance condition.

(i) The terms which are Doppler-free usually give
smaller contributions in the collision regime, either
because their population factor is small Py terms)
or because their individual contributions cancel
(terms containing excited electronic states vibrational
resonances). In the Doppler regime, all these terms
are responsible for spectral resonances whose widths
are of the order of the collisional linewidth and whose
amplitudes become comparable to those of the
Doppler-broadened resonances ().

(iii) The Doppler-free character of a susceptibility
term is given by the existence of a particular velocity
group which simultaneously minimizes two or three
of the resonance denominators and by the in-phase,
cooperative nature of the contributions to the asso-
ciated time-ordered process from nearby velocity
groups. We have called these Doppler-free processes
selectively Doppler-free in contrast with processes
such as two-photon absorption which can be truly
Doppler-free and involve the participation of all
velocity groups.

This analysis has also been extended to other non-
linear processes such as CSRS and stimulated Raman
scattering ; most of the terms which dominate in the
collision regime are also selectively Doppler-free.
These two techniques are therefore better suited than
CARS for the high-resolution Raman spectroscopy
of gases.

Weak elastic collisions could also be included in
this diagrammatic approach of CARS line shapes,
by taking the Fourier transform of the density opera-
tor evolution equation with respect to axial velocity,
as was done for saturated absorption spectro-
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Appendix I. — The density operator p'(z’, ', v,) for the class of molecules having velocity v, along the z
axis, written in the molecular frame of reference, is a solution of the evolution equation :

', 1,
p'( )+ R(

— i
=7 p'(Z, t,v,) — p) = —,;—[HO + V', ), p'@, t,0,)] 1.n

where Rp’ represents the relaxation processes towards the equilibrium density operator p(® and where V'(z', t')
is the interaction Hamiltonian :

Vi, 1) = — p. 8@, 1);

~

§'(z’, t') is the electric field expressed in the molecular frame. We can obtain &§(z’, ') from &(z, #) as given in
eq. (1) using the Galilean transformation from the molecular to the laboratory frame :

b=t } 1.2)

We have thus :
§,t)=8C=2z +v,t,t=1).

For the field interaction represented by the one-vertex diagram of figure 2a, the integration of eq. (I.1)
leads to :

A i ’ E . PR , ’ P @ . . .
3 VE, ) = ——“;“ - L gmioft gikj@ ¥ vat) gl0y j dv e~ H@asTims)t gllos kvt p U 1 — 1,0,) . (1.3)
0

The expression p{" 1z, t, v,) for the density matrix element in the laboratory frame is then obtained from

eq. (I.3) using the Galilean transformation (I.2) :

i, E; _.
pe Nz, tv,) = pgt I =z — v, 1, =t,0) = —;“h L gTiot x
0
% eikiz el(ﬂj‘[ dr e~ {@as—ivap)t gilw;—kjv2)T p;(";})(z — v, bt — 1,0,). (1.4)
0

Using again p,9(z — v, 1, 1= T0,) = PNz — v, 7, t — 7,0,), we get eq. (10) in the text.
A more general derivation using a Lorentz transformation between frames, and using density matrix elements
between energy-momentum states will be found in ref. [18].

Appendix II. — GENERAL EXPRESSION FOR A THIRD-ORDER NONLINEAR POLARIZATION. — The results of the
present paper can be extended to all nonlinear processes. We give here a brief account of this generalization
which will be presented in more detail in [18].

We shall derive the general expression for the polarization corresponding to the nonlinear process represent-
ed by the diagram of figure I1.1 which includes all possibilities of interactions with three different waves coming
from both directions along the same z axis. To gather all possibilities of choices between vertices on the first
or on the second column we write the transition moments with Liouville space notation :

'uasﬁs:arﬂr = M‘zsar 5ﬂrﬁs - “ﬂrﬂs 5aras * (II'I)
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4 Po

Fig. I1.1. — General diagram for a third-order process with
three different waves coming from both directions.

At each perturbation order r, the interacting field component is written :
3é/e) E, exple, (o, t — & k,z — ¢,)]
with :
g=+1, ¢g==x1, é+H=¢, e(—1=¢.

r r T

The complex nonlinear electric polarization corresponding to this very general diagram is given by :
P® =2 Ny, p5), (I1.2)

where p{). is obtained by simple application of the diagrammatic rules :

+ © 0 ©
o), = f dr, m»z)j s, j o, j ey x
- 0 0 0

1[0 83(65) )spsapo(Ea/2 1) €Xp[ — (i0y,5, + Vusps) T3]

exp { &5 ffws(t — t3) — &3 ka(z — v,73) — @3]’}

i[858 ) sp.005.(E2/2 ) expl — (iy,5, t Vasps) 7,]

exp { &3 fw,(t — 13 — 15) — & ky(z — v,(t3 + 7)) — ®,]}

i[n.€1(e1)]aspy,0080(E1/2 ) exp[ — (0,5, + Vap,) 1]

exp { &) flog(t — 15 — 1, — 74) — &1 ky(z — v,(13 + 7, + 7y)) — ?,]} Piﬂ};o ) (I1.3)

X X X X X X

where p0}_contains an implicit ,,,, to represent an equilibrium population.
Quite generally the P® . &, component of the nonlinear complex polarization is proportional to the quantity :

[u * é4]ﬂ3a3[" . é3(8$)]a3ﬁ3,dzﬁz[u . é2(8,2)]a2ﬂ2,11ﬁ1 [" . él (8/1)]a1ﬁ1,aoﬁo

which can be easily calculated in the general case of arbitrary polarization vectors é, and degenerate levels
following the method of reference [20]. In the present paper we have assumed the fields to have a common linear
polarization & and non-degenerate levels for simplicity so that the previous quantity will be written :

3) —
M = Hgaus Maspa,azps Pazpa,aib Heip1,a0B0 - (H‘4)

We get therefore the following third-order polarization :

PO = PO.s = — iNp©, (WO/4 1) E, E, Ey exp[ — i@ 1 — k@ z — ¢®)] x
+ oo
g J, dl’l F(Uz) [— i(w(l) T Wgypy + i’))mlil — kW vz)]_l
-

x [- i(w® — Drpy T Warpy — k® vz)]_1 [- i(e® — Oyypy + Wagpy — k® Uz):l_1 > (I1.5)
with

r r r
" — _ ’ r) = — 1o ") — _ ’
o = lejcuj, k Zlajsjkj, o = lejqoj.
J= J= J=
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If we introduce the notations :

C“rﬂr = éo‘rﬁr + inarﬁr = (w(r) - a)drﬂr + i’ydrﬁr)/k(r) u,

0 =nuv,u,
the susceptibility contribution can be written :
1@ = — iNpO (MR /7 kD k> k® u?) x

X j do[(— i, + ) (— iCa;,,z + i0) (— .5, + i0)]" ! exp(— 6%) . (11.6)

The 6 integral is calculated as usual :

+ oo
j do(— il + i0)~ " exp(— 6%) = 7w({,p) if k>0,
+ o
AN j do(— i, + 1)L exp(— 0%) = — nw(— L) if KV <0.

If we define &, = k®/| k) | we get :
7® = (,-\/7_t Np©, MOE kD kP k@ u?) x

2! W(81 Cmﬂl) €2 W(SZ Cazﬂz) &3 W(83 C“3ﬁ3)
g [(Cazﬁz - Cmﬁx) (Casﬂs - leh) " (Calﬂl - Cazﬂz) (Casﬂs - Cazﬂz) " (Cdlﬂl - C“SBS) (60‘252 - C“3ﬁ3):| , (H7)

or in a form which can be generalized to higher perturbation order :

3
1@ = (= i(— 1) /7 Np©@, M2 ) Y. wle, (g1 671 T KOCop, = Lap) - (11.8)
r=1

s=1,s#r

The total polarization of the medium is finally obtained by summing over all possibilities to choose the
successive a,, B, and the three fields.

We now show that Doppler-free processes require either one k® = 0 or two opposite &,.

If one of the k® — 0 the corresponding term in the previous sum disappears and we are left with :

iﬁ Np©, MR [ss w(gg {op) — & W Catﬁt)] (11.9)

. g 2
a)(r) - w“rﬂr + l'yarﬂr k(S) k(t) u (Catﬁt - C'Isﬂs)

where the first denominator gives a true Doppler-free resonance when @® can be tuned through , ;. This is

the case of Doppler-free two-photon spectroscopy for example. If £, ; and &, 4, are simultaneously very large
but different from each other, when o® =~ o, ; the asymptotic approximation w({) = i/\/ 7 { gives the usual

expression :
(0) 3) /53
@~ — Npaow MR ! : (11.10)
a)(r) - warﬂr + iyarﬁr (w(t) - watﬁt) (w(S) - wasﬁs)

3) —
X()_

A double resonance is obtained for £, ;, = Cops = &, as canbe seen on the second denominator ofeq. (I1.9) ;
this implies that a given velocity group v, such that 6, = &,, cancels the real part of two denominators in
eq. (I1.6). This double resonance is also obtained when k® # 0if | &, , | > | &, |aseq. (11.9) is still valid under
those conditions. This double resonance may be selectively Doppler-free or Doppler broadened as we shall
now see. In the Doppler limit (7 — 0) we may use :

2i (¢
w(& + in) ~ w(é) =e ¥ (l + Tj e dt)
TJo

and expression (I1.9) gives at location &, 5 = 601,[?; =&,

ST No® MO (e, — &) exp(— &)

, 11.11
w(r) - a)arﬂr + iyarﬁr k(S) u’ya:ﬂt - k(t) u,yusﬂs ( )

X(s)(éo) =
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which differs from zero only if e, = — ¢, and has a non-negligible amplitude only if £, is not too large because
of the factor exp(— &2). If ¢, > 0, one obtains in addition to the selectively Doppler-free dquble resonance two
Doppler-broadened resonances located at &, , ~ 0 and ¢, ;, =~ 0 owing to the factors w at the numerator of

eq. (I1.9). For example, in the vicinity of £, ; = 0 we may write :

i/n Np©, MR

X(3) ~ 5
(@ — @, ) (@Y — @) || u

w(gs (op,) 5 C(1.12)

which is the usual expression for off-resonance CARS or Doppler-free two-photon spectroscopy with unequal
frequencies ; this is the reason why we label the corresponding Doppler-broadened resonance, single resonance.
As &, increases, the selectively Doppler-free double resonance is more and more shifted from positions Eoep, = 0,
€up. = 0 and reduced, and the Doppler-broadened single resonances acquire an increasing contrast. This
situation is illustrated in the main text by the double-resonance and single resonance associated with diagram Se.

If &, = ¢, = ¢ the amplitude of ¥ for a double-resonance can still be obtained by expanding the error
function to first orderin# :

WE + i) ~ W@ + inw'(©)
with [23] |
WO = — 20wQ + %

We get at position &, , = ¢, = & :

i /n Np&, MPR3

%o%0

ONE) = —
170 (@0 — w,5 + W,p) kO uk®u

ew'(eéy) » (I1.13)

which is smaller than the amplitude of the selectively Doppler-free double-resonance by a factor of the order
of y/ku, and has therefore the same order of magnitude as the signal away from the double-resonance position.
No strong resonance will thus emerge at £,. This situation is illustrated in the main text by the double resonance
associated with diagram Sa.

When the three detunings &, ; , &, 5., &, have the same order of magnitude and when all ks are different
from zero, the general formula (IT.7) should be used. A triple resonance is obtained whenever the double condi-
tion &, 5 = &,.5, = &up = &o can be satisfied. Two of the ¢, have the same value, for example, ¢, = ¢, = ¢
in the Doppler limit we get :

i /7 Np©, MR (¢, — &) exp(— &)

3) = — , 11.14
v ROROKOw (1, = 1) (1 — 1) @19
which differs from zero only if g, = — e.
Ife, = ¢ we can use the expansion of w({) to second order in# :
112
w(& + i) ~ w() + inw'(€) — 5 w'(&)
with [23]
w'(Q) = — 20w — 2w()
and we get for &, :
y3(&,) = \/2_k(') k(s)ok(‘) = ew”(e&y) , (I1.15)

which is smaller than the selectively Doppler-free triple resonance by a factor of the order of y?/(ku)?, and thus
cannot emerge from the background.

These expressions and considerations are applicable to all nonlinear processes : saturation spectroscopy,
two-photon spectroscopy, CARS, CSRS and SRS, etc... ‘
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