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We present 2 first detailed account of our thecretical approach to reproduce observed superfine and hyperfine struc-
tures in the v3 band of SFg and we display various observed and calculated pattems of superfine clusters exhibiting hyper-
fine effects. The main operators of the hamiltonian are derived and the associated constants are related to molecular param-
eters. We show that, owing to the off-diagonal terms in the hyperfine hamiltonian, a mixing occurs between vibration—
rotation states with different point-group symmetry species. As a consequence, superfine and hyperfine structures have to
be considered simultaneously and hyperfine hamiltonian matrices connecting several vibration—rotation states need to be
diagonalized to reproduce the spectra. We analyse in greater detail a few typical examples from which several molecular
constants have been determined (e.£. Zos4. ¢a). For the first time. the sizn of ¢4 is obtained. Also an effective change, Acg,
is found between upper and lower levels which can be readily interpreted as a manifestation of the tensor spin—vibration
interaction.

1. Introduction

During the past fifteen years, the resolving power of infrared spectroscopy has been multiplied by a factor over
105 from the gigahertz t; the kilohertz level. Favourite test molecules for this research have been spherical tops
such as CHy [1], 0sO4 and especially SFg [2—13], partly because of many favourable coincidences with laser
lines but also because of the beauty of the formalism developed for these molecules and finally because of the
boost given to their study by laser isotope separation programs. For these molecules the considerable progress in
resolution which has been achieved, has revealed new structures of tremendous richness and complexity. This
progress is fllustrated by fig. 1 where spectra of the v, band of SF at increasing levels of resolution are displayed.
At the lowest resolution (top of the figure) we find the band envelope recorded by Brunet and Perez with a Girard
grid spectrometer having 2 0.07 cm—1 resolution [3]. This stage only shows the existence of P, Q and R branches
as weli as the presence of many hot bands. The next step, which requires either semiconductor diode lasers or
Fourier transform spectroscopy exhibits the tensor fine structure of each J manifold {4]. This tensor simucture is
only partly resolved owing to the Doppler width limitation which leaves many clusters of lines unresolved. To go
further and resolve the structure of these clusters (superfine structure) sub-Doppler methods such as saturation
spectroscopy are required. Superfine splittings have been observed since the very beginning of saturation spectro-
scopy and the Q(38) F%Eg F? triplet in coincidence with the P(16) CO, laser line is the most familiar example since
it was first resolved in 1969 [5]. The fact that this triplet was not published in the open literature until 1977
[6,7] shows clearly enough the lack of appreciation of the imporiance of these structures over that period. The
underlying physics was not understood until the work of Harter and Patterson [14] following earlier ideas of
Dorney and Watson [15]. They showed that clusters had their origin in 2 spontanecus breaking of the point-
group symmetry T4 or Oy into a lower symmetry (C3 or C4 subgroups). Since there are 6 (respectively 8) equiv-
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Fig. 1. Structure of the »3 band of 32§F, at increasing levels of resolution: (2) Room-temperature band-contour of the PQR type
obtained with a Girard grid spectrometer {3]. (b) Doppler-limited semiconductor diode laser spectrum exhibiting the tensor fine
strecture of J-manifolds and unresolved clusters {4). (c) Part of saturation spectrum obtained with a ﬁee—mnmn% waveguide CO»
laser (resolution ~20-40 kHz [7,8]) and exhibiting the superfine structures of a trigonal cluster (R(28) AZFZF A ) and of a ietra-
gonal cluster (R(29) {‘;Fz) (d} Saturation spectrum obtmned with a frequency-—controlled laser spectrometer (zesolution =1 kHz
[10,13]) exhibiting the hyperﬁre structure of the R(28) A‘r tine and the splittings between/ =1 and /= 3 components The abso—
lute frequency of the R(28) A2 line center is 28.464 691 306 THz [11].
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alent C, (respectively C'3) axes of rotation, this results in 2 6 or 8fold remaining degeneracy. The tunneling be-
tween these equivalent axes of rotation (tumbling motion) tends to restore the original symmetry and splits the
clusters into individual components which are labeled by 1epresentations of the original group. The corresponding
superfine structures are doublets, triplets or quadruplets with well-defined patterns that will be illusirated in this
papet (e.g. the quadruplet R(28) AgF-ll F%A(l) in fig. 1). At the highest resolution (with a frequency-controlled
laser spectrometer) vibration—rotation lines exhibit their magnetic hyperfine structure [1,2,9,10] as illustrated
with the R(28) A3 line of fig. 1. As we shall see in greater detail, these magnetic hyperfine splittings occur be-
cause the nuclear spins are sensing magnetic fields of various origins in the molecule. The major surprise in these
spectra came from unexpected crossover resonances which have now been successfully interpreted as forbidden
lines coming from a mixture of states by off-diagonal contributions of the hyperfine hamiltonian [2,12]. The
hyperfine interactions violate the molecular point-group symmetry species of vibration—rotation states and re-
spect only the Pauli principle. The breakdown of the molecular point-group produces spectacular structures and
splittings (such as F;,,—F 12 9T Agy —Alg splittings) and the detailed study of these new effects is the main subject-
matter of this paper. Let us emphasize that, as a consequence of these mixings, superfine and hyperfine structures
cannot be treated separately.

The kilohertz resolution illusirated in fig. 1 in the case of the R(28) Ag line has recently been extended to the
full 600 MHz tuning range provided by CO, waveguide lasers around each CO, laser line [13]. As a result, a great

. number of hyperfine and superhyperfine structures have been recorded and are presently being analysed. In the
present paper we shall limit ourselves te basic considerations and to a presentation of the methods and of the for-
mulae which have led to the results published in ref. {12]. Only a few early examples, comprising those given in
ref. [12], will be discussed here, mainty for the sake of illustrating various situations encountered in the spectra.

In 1978 a paper by Itano [16] appeared on the calculation of hyperfine structures in tetrahedral molecules
and we extended his treatment from T4 molecules to the case of an Oy, molecule such as SF¢. Also in 1979, a
paper by Michelot et al. [17] gave the formal expressions of possible hyperfine operators and their matrix ele-
ments in spherical-top molecules. Along the presentation of our calculation, we shall make extensive use of the
material contained in these two papers and this paper can somehow be considered as a link between the two ap-
proaches.

It is also obvious that many cther previous works on nuclear hyperfine interactions in molecules have inspired
us and a good review of these theoretical and experimental results has been published by Dymanus [18]. Here we
shall strictly focus on the v; band of SF: in section 2, we give details on the group-theory material that we use;
in section 3, we establish the hamiltonian operators responsible for the splittings under study and finally, in sec-
tion 4, we display and analyse several examples of hyperfine effects in fine and superfine structures.

2. Group theory and general conventions

We shall follow the basic idea [19,20] that the invariance group of a quasi-rigid molecule is “O(3) X G when
no external field is applied; L O(3) is the full rotation group of the space-fixed frame (SFF) and G is the point
group of the equilibrium configuration. In the case of SF, G is the group Oy, and we shall make ours the number-
ing of the nuclei specified in ref. [17] as well as the definitions of the operations and of the irreducible represen-
tation matrices described in refs. [21,22] . These are consistent with the exhaustive work on the Racah algebra
of the point group O published by Griffith {23], so that we shall be able to use his tables of ¥, W and X coeffi-
cients (analogous to the Wigner 37, 67 and 95 symbols respectively). The point group Oy, will often be considered
as a subgroup of the full rotation group MO(3) of the molecule-fixed frame (MFF) and it will be convenient to
introduce irreducible representations (IRs) of MO(3) which are oriented with regard to this subgroup [24]: the
IRs of LO(3) will be the standard ones, with spherical basis and active rotation matrices [25], and will be labeled

* Inref. [21], one should read </3 instead of 3 in the matrix ED(C3).
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with J_, where 7 is the parity character g or u. Irreducible tensors and IRs of L0O(3) X G will then be specified by
{/,, ©) ot (7, J.-nC)if we deal with quantities which are also tensors in LG (3) X MO(3) (rotational wavefunc-
tions are such quantities for which we have J, =J". 2 emC) or | M, T 1Co)).

The molecular wavefunctions can be written as a product of two wavefuncnons the rovibrational wavefunc-
tion Wy and the nuclear spin wavefunction Wyq which will both be, separately, irreducible tensors. The irreduc-
ible tensors ¥yg are unambiguously labeled with the total nuclear spin 7 and the G;, symmetry species Cg; the
correspondence between f and Cy has been worked out independently in refs. {26] and {43] and the exphcxt ex-
pressions of the components \PN(ZHM S ar |1, MI C0), as linear combinations of the functions IT;- 16 R m;) can
be found in ref. [17].

We shall also use the classification proposed by Berger [27] for energy levels: the symmetry species of ¥y
will be (J..,J}+2C), where J,: =J_ in the ground vibrational state and J;r =R,y , in thev, = 1 state; Iyp will
then be written as |/, M, R,- nCp 0,v3, &), where  gathers all the unspecified quantum numbers. The molecular
wavefunction must sansfy th= Pauli principle and only combinations of WyqWy,g which are of symmetry species
A, must be considered. Akin to that coupling in the point group Oy, we shall couple ¥ and ¥y in Lo
to obtain the total angular momentum F =J + J. Finally a total molecular state vector will be written as

I, L) FMg; (R nCR Cg) Agy5 03, @)

Operators will also be symmetry-adapted; vibration—rotation operators Ty and nuclear spin operators Tyg
can be separately written as irreducible tensors and matched to give a totally invariant hamiltonian of symmetry
species (0,, Ag,); in order to build totally invariant operators or Pauli-satisfying wavefunctions; one just needs
to apply standard rules for Kronecker products of IRs. Once we have quantities written as irreducible tensors, we
can use all the power of Racah algebra to perform the couplings and compute matrix elements:

(1) The matrix elements of an operator 7 (" Z’CZ) satisfies the Wigner—Eckart theorem:

. Ml,nl,Cl,ollTUfmC2)]J‘3,M~ n3,Cs, 63}

g Ty (€

) Ty my C I TVr CD N, 1€y 1)
-M, My M,

This is consistent with eq. (14) of ref. [17] since, for Oy,, covariant and contravariant components are identical.
(To make formulae less cumbersome, from now on we shall omit = whenever possible, e.g. in 37 symbols which
are SO(3)37 symbals if 7y X 75 X 73 = gand zero if not.}

(II) The coupling of two irreducible tensors 7U171-C1) and 7U272-C2) will give irreducible tensors (J;, €) ac-
cording to

[7¢2-C0 x T(Jz.Cz)]gz{:g) = {2 + D[CI P2 (~1) 1~ T2+M

Sy J
M\ My My M 0, 0y O Moy Maas~
G102 -

In the case of wavefunctions, we shall take in the above formula Jo,, = =1;,J, =F;, and C= A,,;in the case of
two operators Hygp and Hyg leading to a total hamiltonian operator, one must have J_ = 0g and C= Ala which
implies /1y, =J24, and Cy = C,;in this case, (2) is related to the double scalar product as mentioned in ref. [16]:

H&Jé. .0). H(Jé—,C) = (-DJ [T + DICTIY? [H\%{’Q X Hrglg,C)}(og,Alg) ) 3)

(II) The matrix elements of such an mvariant operator in the coupled basis are given by
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<(j[)FMF; (R”CRCS) Azu : U3QI[H‘(}§’C") X Hg};',C':)](Og,Alg) [(J’I’)F'Mk; (Rlnlci{cé) Azu; Usa’)

(=1)A2utC HORHCEHHF I+ { Cr Cg Azu} ]1’ J'F }

=8 8 .
FFOMpM 5 [C1V2 27" + 11172 Cg Cg C” lJ rJ

X I, RnCruze LG CNT, R'n'Chvlya! I, Cg WHGE-C I Cyy @

The reduced matrix elements of nuclear spin operators will be calculated by eq. (1); the reduced matrix ele-
ments of rovibrational operators can be found in the abundant literature on spherical-top molecules [29]; an im-
portant discussion on the phas° of these reduced matrix elements is developed in ref. [30]. If the operator
HéR +C") can be written as HY ( n"C" ,its reduced matrix elements are given by [31]:

, RnCrusall HY R e T, R'n' Chv'ye’s

=(-DRKR R R, <J RelHG RO, R . ®
In the course of this work, we have thus needed isoscalar coefficients K, #,Cy nC ﬂﬂCg whose values are not reported
in the literature when n,C ¥ n,C; and we give in the appendix the values of the rélevant coefficients necessary
to understand the examples presented in section 4. Now that we have defined the mathematical tool that we want
to use and which is completely consistent with the analogous formulae given in ref. [17], we want to write down
the hyperfine operators, explicitly, as in ref, [16], and transform them to expressions suitable for that tool.

3. The vibration—rotation and hyperfine hamiltonians

The effective molecular hamiltonian that we use is the sum of a vibration—rotation hamiltonian and of a nuclear
hyperfine hamiltonian. The vibration—rotation part is the usual contact-transformed Darling—Dennison expansion
which has been described extensively in the literature for the ground state and for a triply degenerate excited state
{28—30]. The nuclear spin interaction hamiltonian will be derived in a manner similar to that followed by Itano
[16] for T4 molecules; we shall obtain expressions consistent with the effective hyperfine hamiltonian deduced
from the real hamiltonian through one electronic contact transformation [30]. Actually it is convenient to split
the effective hamiltonian into three paris:

H=Hyg +Hyg +Hyyp 6)

where Hp, represents our “zeroth-order” wbrauon—rotanon hamiltonian for which we assume that we know the
eigenvalues £y and in addition we shall keep in HVR only terms that do not lift the sphencal degeneracy: all
states with the same J, R, /3 and v4 belong to the same E\,R We shall then take this EVR as our zero energy since
we are only interested in narrow spectral structures, within a given R-manifold. For the spectra that we want to
reproduce, all terms which do not split the substates of a gwenR -manifold would result in a mere translation of
the spectrum and we suppose that they are gathered in HVR

3.1. The vibration—rotation hamiltonian Hy

Hyg gathers all the vibration—rotation (VR) terms that we need in order to calculate a correct pattern of VR
levels. It is easy to calculate this pattern in the v3 = 1 state: the tensorial splittings between VR lines have been
fitted with the spectroscopic parameters given in ref, {2] and with off-diagonal corrections; the hamiltonian con-
stants that can be derived from this fit yield a tensorial splitting of levels in the v; = 1 state only, so that the pat-
tern of levels can be taken identical to the pattern of VR lines. Practically, this pattern can be calculated satisfac-



422 J. Bordé, Ch.J. Bordé[Structures in the v band of 328r,

torily for our purpose with the second-order fourth-rank tensor 7- 324 (in Robiette’s notation [32]) and off-diag-
onal corrections in R only; the hamiltonian constant 7,5, is related to the spectroscopic parameter g (f5o4 =
—2g(7/12)Y/2) and is equal to 1125.58 kHz.

In the ground state, the operator T'5,4 has no non-zero matrix elements and the first operator in the hamil-
tonian expansion which gives rise to a tensorial decomposition of the rotational levels is the second-order fourth-
rank tensor centrifugal distortion Tyy4. Its constant £p4, was not known until cur work or hyperfine interactions
and has been determined in ref, [12] from the structures of five hyperfine-induced crossovers; its value is very
small, 5.7 Hz, in agreement with theory [39], but its role is essential since it governs the strength of the effects of
off-diagonal hyperfine terms. :

The operators T4 and Ty, 4 have the following matrix elements in the VR basis:

(T, MyRnCav3l31 Tyq U, M;RICOU313) = 8,1 (JRNC| T34l JRAC) )
with

(2R = 3)...CR + ]2 4 R R

(RRnC|T5s4|RR1C) = (A2 [ (DRFZ, ncnc

2ZR(2R + 2)
=1z [QR=3)..(2R+5)]12 4 RR
(R + DRACI T4 IR + DRNCY= — 3 (B2 @GR+ )R +3) (DRFY ncnc
)2

_ _ =_tazin (GR-3)..QR+5)]12 4 RR
(R ~ DRACIT,24 (R — DRnCY=— 1 (3) et U CRE BR,
(w3 = 0JRNC |Tga4l3 = 0JRACY =3 (/2 [(2/ ~ 3)...(7 + N2 (-)7F§ B R,

2R — 3)...(2R + 5)] 112
03 = 1RRAC|Togsls = 1RRO) = (V2 [RER +1) — 10] (R LRII T (pprpt B B,
(3 =1 (R + 1)RAC|Tpyylv3 = 1 (R + 1)RAC)
2 2R - 3)...{2R + 5)] 12

-CAPIR+ 12+ 3@ v+ 5] RS DRI rpt 2 2

W3 =1 (R ~ )RAC| Toglug =1 (R — 1)RCm)
2R —- 3)...(2R + 5)} 112
=@)r®2 -3r+5) L ORI (e Fa 2. (8)

2R(2R-1)
Since these operators do not act on nuclear spin wavefunctions and do not lift the M 7 degeneracy and since

the coupled basis is obtained through an orthogonal transformation, we have the same expressions for the matrix
elements in the coupled basis:

(W FMp; (RrCRCSY AgyugalTynq of Tous|(I'T)F'MEp; (R'n'CRC5) Ay v3)

= BIIIBJJ'SCR C:Q 6FF'65YP‘{}-‘ (JR”CRU3C!|T224 or Tw [J'R'n'C§v3Ot') . (9)

The coefficients F :1 n?‘ ng‘ which appear in formulae (7) and (8) have been tabulated by Krohn [33]; their
numerical values display the clusterization of levels studied at length by Harter and Patterson [14]. Clusters are
particularly tight towards the ends of R manifolds and become tighter as R increases; within these tight clusters,

vibration—rotation states will be substantially mixed when coupled by off-diagonal matrix elements of nuclear
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hyperfine operators, Since all vibration—rotation states within a cluster have different symmetry species C there

is no way that this mixing can occur owing to th vibration—rotation hamiltonian alone.
3.2. The spin—rotation hemiltonian

At the nucleus &, the magnetic field created by the relative motions of the electrons and of the other nuclei
can be related to the total vibration—rotation angular momentum J through a tensor CK and the interaction be-
tween the magnetic moment of that nucleus and that magnetic field can be expressed as:

W§R =,Fk.gk=_egNIk.gk=_hIk.CkJ, (10)
where the components of the nuclear spin IX and of J as well as C¥ are expressed in the space-fixed frame (SFF).
Following what Ozier et al. [34] did for T4 molecules, we can easily derive the expression for C¥ in the mole-
cule-fixed frame (MFF). For obvious symmetry reasons, the magnetic field created by J, (respectively J. orJ. }

wili be directed along the z (respectively x or y) axis. In addition, for a nucleus e.g. on the z ax1s Iy andJ wxll
create identical effects; for nuclei 1 and 6 we can write:

"C_L 0 0)
Cl(MEF)=CSQMFF)={0 (, © 1)
[o 0 ¢

Similarly, for the other nuclei, we have:

{ C, 00 (C, 0 0
C}(MFF)=C4MFF)=10 ¢, 0| , C3(MFF)=C5(MFF)=/0 C, 6 | . (12)
0 0 C 0 0 C
Each of these tensors can be written in the form
CK(MFF) = ¢,I +} cqeX(MFF), (13)

where ¢, and ¢4 are called respectively the scalar and the tensor spin—rotation constants T; 7 is the identity tensor
and the €¥ (MFF) are given by:

10 0 1 00
el(MFF)=eS(MFF)= |01 0} , e2MFF)=¢*(MFF)=|0 20},
00 -2 0 01
200
S(MFF)=eSMFF)=| 010} . (14
l 001)

These e¥(MFF) satisfy the usual properties: they are symmetric, traceless and therefore transform under rota-
tions according to the J = 2 representation; moreover their sum is zero.

The scalar part of C¥(MF F) is of course invariant in the transformation from MFF to SFF and gives rise to
the scalar spin—rotation interaction

T With this definition of €4, one must take |egl = 4.25 kHz; the value given in ref. [12] is twice cg.
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W = —he, %)I’-’ J. 7 : L (15)

To obtain SFF components of the tensorial part of CX | ¥, we first derive spherical components
el(f)k(MFF)(g =0, = 1, 2} from the MFF cartesian components efﬁ(MFF)(a, B=x,y,z)glven in (14); Caok
and de Lucia [35] have given the relationship between the two sets of components in the general case of a rank-
two tensor T3

T =6~ V2BT, — (T + T, + Tx)l, TR =3T3 [T + Ty +i(T), + T,

T =4 [Ty — Ty 21Ty + T )1 (16)
In our case this reduces to '

662)"" =3/2 €53 e%’k =0, e(iz_k =1 (e'f_,c — e‘,'y) an
and the only non-zero components are

ePFMFF)= /6 (k=1and6).

eP*MFF) =32, €B*MFF)=3 (k=2and4),

ePFMFR) =32, eF*MFF)=—-3 (k=3and5). . (18)
The SFF components can now be abtained through the rotation matrices

D (SFF) = 27 DD (~w) eDFMFF), (19)

13

where we take the inverse rotation —w since we use the active representation. We shall couple the rank-iwo ten-
sors ¥ (SFF) with the rank-one tensor /(1) to transform the tensor spin—rotation interaction from

Wl = Ly 4:_) Ik (SFR)J (20)
to
W =1 V5B hey ?10%- [e@¥(SFF) X JD]D) | 1)

where the factar —/5/3 accounts for the change of normalication of the tensor X and is given in the appendix
of ref. [35].

Now we want to take advantage of the point group symmetry and use irreducible tensors in LO(3) X G and
not in LO(3) only. We shall therefore use the orthogonal matrix {Co |k} which relates quantities labeled with one
nucleus index X to irreducible Oy, tensors:

eP*(SFF) = CE (C, 018)e%O(SFF) . 22)
, G
As pointed out by Itano {16], the matrix elemenis (Co|k) are identical to the coefficients of the symmetry-
adapted nuclear spin wavefunctions with one nuclear spin opposite to the five others, that is to say with M= 2

(table 1). In the MFF frame, the matrix (C, |k enables one to define quantities [¢{?] @ (MFF):

[ DMFF) = 2;) (€, o1t) eDF (MFF) @23)
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(Coly 1 2 3 : 4 5 6

A NG 16 INE N3 YN TN
Egl 13 —1/2/3 —1/23 S 5, N5 —1/23 iIN3
Eg2 0 -1/2 1/2 -1/2 1/2 0
Fiux 0 0 12 0 C-INT 0
Flgy = . O -2 0 12 0 0
FiuZ 182 0 0 o 0 RN

for which we can deduce from (18) and table 1 that the only non-vanishing components are
[FRIPMFR) = 3vZ,  [FPIQMFF)=~3. @9

From (22}, (19) and (23}, we can check that [egc)]f)(MFF) and eﬁ%Q(SFF) are related by rotation matrices
{similarly to (19)]:

2,0 - @ ()
e%O(SFF) ? D) (—) [eLO1PMFF) .

In order to be consistent with ref. [17], we shall use the same Oy, symmetry-adapted nuclear spin operators
I‘E};C) which turn out to be defined as

A = é) Al [OF | [LED = o Zg Eyolk) IDF | [LFw = /3 4:) (Fpolr IDF (25

If we substitute these expressions in (15) and (21) and if we recall that the matrix {Colk) is orthogonal, we get:

WSy = —he JLAR; JLALR) (26)

Wik =353 ey (<3 I0ED: [ EI(SFF) X (A1) LED | @7
which we shall write

Wik =3 V572 heq [19-F9 X [*F(SFF) x 71 A19] 4 ED] O A9) @)

A key point in the calculation is now to realize that the components of [¢(C)](MFF) are proportional to the
matrix elements of (Z)G“ES" which transforms a rank-twc spherical basis to a cubic basis [24]; so that we can write

21 1
[ ED(SFR) XJ A1) LED = (L1)ut1 (5 25 ( ) eZ-Ee)(sFF) I {1 A1)
- . pivz \py py —pl M ?

2 1 1

N - 2 2 .

=Ls 2 (—1yp+l \/;( )[egEg)],E:)(hIFF) ‘Dﬁ?‘)‘l(—w)Jg’Alg)
M OBiM2 Hy Ky —H

=+/1/5 Z} [6?3)}5)(MFF) [D@D X J(I,O)]‘(‘:f) =-3v/2[5 E (2)G::56 [D(Z,Z) X -"(1’0)]2:'2)
n . n

= —32f5 DG X JL.0] SUJEQ , (29)
and finally we have
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Wy = —hcg HOED X (D@D X JG.0](L 2P O A1g) ¢0)
which is the form of operator suitable to easily calculate the matrix elements according to eq. (4).
One should note the difference with the formula given in ref. [17] where

WSTR =y [[1OD X DD, 2Eg i 7(1.E(0.A1g) 31

The two expressions are equivalent as can be seen from the fact that the two opsrators [[(%:12 X D(L1](1.2) and
[D2-D X JA.0](L2) have opposite reduced matrix elements in the |J7) basis:

211
DD X JAOTWD Ty = 15(-1)7 { I J} @+ DY+ 1)IY + 12

= — TIGD X pLD]ED Iy . (32)
Hence these two operators also have opposite reduced matrix elements in the |JR) basis and the two expressions
of WgR have identical matrix elements provided one takes ag = ficy.

3.3. The direct spin—spin hamiltonian

The interaction hamiltonian between two magnetic dipoles p’ and g/ is given by (an additional pg/4n factor
should appear in the MKSA system):
Wi =il il — 3Gy ypiiny (33)
where ry; = r; — ry. It is well known [25] that this can be written with rank-two irreducible tensors made up
from the rank one tensors u':

Wi = — /6l |3)Z( D CRUSFRW X w1, Go

where C(_%Z""(SFF) is the value of the renormalized spherical harmonic of Racah for the SFF angles 8,; and ¢;; as-
sociated with the vector 7

2if - (2 .
CM = Em2Y POy, ¢ - (35)
If now we relate the magnetic moment to the nuclear spin through
uli=grugtt, (36)

and if we consider the molecule as a rigid rotator in its equilibrium configuration for which l7;| = R for adjacent
nuclei and R+/2 for opposite nuclei, we can introduce the coupling constants d pand dj:

d) =gfuRfhR3 , dy=d[2V/7. (7

The direct spin—spin interaction hamiltonian W is then obtained by summing Wgs over couples of nuclei; in
order to take advantage of the orthogonality of the matrix (Calr]) which we shall use in (42) and (43) below, we
split Wgg into two parts:

Wes = 21 Wi = Wl + Wl | (38)
i<j
where Wés is the hamiltonian which would result if all nuclei were separated by the distance R:

Wi = —\6 hd, :?; HE (~1)# CRUESFR 1T X IND (39)
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and W%S is the complement to Wgy:

Wls = —/6h(dy — dy) . ::;)35 22 (-1 CQISFR) I X YD . (40)
m

wls can be dealt with as we did for Weg ; first we transform C@)(SFF) to its MFF components:
2)if - %) Q)i '
CRU(SFF) = E DR, COTMFF) . (41)
These MFF components can be calculated numerically with eq. (35) and the MFF angles 6;; and ¢;; of the equi-

librium configuration. The matrix {Colij} which transforms quantities labeled by couples ot indices ij to quantities
Iabeled by IR of Oy, yiclds the following transformation:

[ x AP = ? oy I xN&0, “2)
g
CUFF) = ;/3 ol [ B MFF) . (43)

The matrix elements (Colif? are identical to the coefficients of nuclear spin wavefunctions with two nuclear spins
opposite to the four others, i.e. with M; = = 1; they are given in table 2. Because (Calij} is an orthogonal matrix
we can readily write: ’

Wl = ~v/Bhd; VF5 2 5 2 20 (D ICOIPMFR) DA X N3O . (44)

C,o ¥
Here again we can notice that the numerical values of the [C(C)] ) which are derived from (35), (42} and table 2
are proportional to the matrix elements (°)G C.o which transform a spherical basis to a cubic basis (see table 3):

[COI1DMFF) =3 AGE7 . (45)
If we now express the double dot product of (44) in terms of tensor couplings, we obtain
Wi = —dy 3vZVZID@2ED X [ X [[GE1 @A) _ pd; 3v2VF DR X [ x[]@F210A18) (46)
We shall now deal with W it can be checked straightforwardly that, with the values of C’ﬁz)"j (MFF) calcu-

Table 2

{Colify 12 13 14 15 16 23 24 25 26 34 35 36 45 46

56
1
NN VRN - SN SN RV N SN BN ]

oo+ ot ot 1 % o _ 1t _ ¢ 1 _t_ 1,
Egl  4/3 4/3 4/3 &3 3
Egz ~1/4 /4 —1/4 1/4 0 0 ~1/2 4] ~1/4 [} 1/2 1/4 0 ~1/4 1/4

i U S U S I 1 1 5 UL S S 1 1
Eg1 N N N N N I Y I N N N N e N 3 23 43 45
E'gz —-1/4 14 -1/4 1/4 0 0 1/2 0 ~-1/2 0 ~-1/2  1/4 0 ~1/4 1/4
Fgx 42 O -2 0 0 0 o0 0 ~y2 0 0 o 0 i2 0
Faey O Y2 0 2 0 0 0 0 0 0 0 12 -0 0 -12

Fgz 0 0 0 0 0 Y2 0 -2 0 -~y2 o 0 2 0o 0
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Table 3
Values of () ‘(f)(MFF)

& Co
Fggx Fzgy Fgg'.' Eg 1 Eg 2
=2 0 0 siy312 o iz
=1 —-i32 /32 0 0 0
0 0 ] 0 NE 0

lated by eq. (35), the values [CE&]@)(MFF) given in table 3 and the expressions of [/7 X /] ff) (obtained by eq.
(43} and table 2), we can write the following relation:

CRWMFEF) (11 X 16]D + CA?*MFF) [12 X 141 + CA3B (MFF) [13 X 1] @

=3 CCEIMFR) ([ x 1] &5 — 1 x N3 Fy @7
whence we can deduce, with the same steps as for Wés that:
Wes = —VBh(ds — d))V3I2)VZ DD X {[I X 1]%F — [ xN@ER} 0419 (48)
Finally (46) and (48) can be gathered in the final expression of Wgq:
Weg = =30 [D\P2ED) X {(@, +d,)[I X1} DD + (d| — d,)[I X1)@E}]0A10)

—3y/Bhd | [DPF29) X [I X []@T20]0A1 | (49)

which is in suitable form to calculate the matrix elements. Actually, instead of the operator [f XI]‘(;"’Q defined
in (42) one can use the operator §-C) defined in eq. (44) of ref. {17]. Both sets of operators can easily be ex-
pressed in terms of [7f X 7/ ]‘(‘2), which will yield the relationships between our constants d; and d, ard the con-
stantsd}, dg',d—g and dF of ref. [17]. In particular we have:

§AF) =9 \/7:{[ X 1](2,F28) . (50)
which leads to
dp = —3/3nd; . (s1)

If we consider then the combination
E (2.E) 2,Ep) ¢(2,Ey)
dry, S E +d§EgEgs 2 +d§FluF]uS B
in terms of [ X I/ ]ff), and try to identify it to
(dy +d U XNPED +(@; — a)Tx 3L |

we must (i) cancel the coefficients of [£7 X 7}{?, (ii) identify the coefficients of [/ X #/] O with () # (16), (24)
or {35), (iii) identify the coefficients of [J¢ X 17 ]‘(‘2 with (i) = (16), (24) or (35); this respectively leads to the

three equations:
3dT +/6d5 + 3IV2)dE =0 (coefficient of FiIT)
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-df N3+ g\/-dE = —(3/aB)hld; +dy + (d1 ~dy)] = =(\/3]2)hd;  (coefficient of 112)

—(8/\/§)dE iv2 2d5 = —(3/4\/’ Yahld, +dy —(d, - dz)] =—2+/3hd, (coefficient of I176), (52)
: fmm which we deduce the relauonshxps between the two sets of constants:
d5=iV32hGdy~d)), di=3h{y+d)), d5=-(3[2v2)hd,. (53)

3.4. The spin—vibration interaction

In our previous work [2,51 on the hyperfine structures of three A, VR lines (R 28 Ag, P33 Ai and P 59 Ag),
we have been obliged to intraduce the scalar spin—vibration hamiltonian which can simply be written as:

Wiy =hAl'ly , (54)
where 75 is the vibrational angular momentum associated with the triply degenerate mode v3 we are concerned
with, I is the total nuclear spin, 7=3 1, 61 and where both vectors have to be considered in the same frame. As

pointed out in ref. [36],if R is considered as a good quantum number, the diagonal matrix elements can be de- -
rived by the vector model ({I ) = (IJ) (J- D){(J>)) which leads to:

Ry HCyR 3 ICs, v3 = WSy VR 5 HCyR 3 ICs, U3 = 1)

= [P+ DIFE+1)—J@+1) —II+ DIRER + 1) —JF + D) —2]. (55)

In this formula, one can see that the effect of this operator is much larger in P and R branches than in the Q
branch, where R =J in the vz = 1 level. The same matrix elements would be obtained with the formalism developed
in sections 3.2 and 3.3; if SFF components of [ are used in (34), we can write

WSSV = —ha/B3[10A19 x [(pAD X Igoyi)](l,OAlg)](ﬂ,Alg) , (56)

in agreement with the operator given by Michelot [30].

The treatment of the interaction between nuclear spins and the magnetic field created by the angular momen-
tum J can be repeated for the magnetic field created by the vibrational angular momentum /. Therefore we ob-
tain similar interaction operators: indeed (56} is analogous to (26) and there exists alsc a tensor spin—vibraiion
inieraction [30], analogous to (31) (and derived by Uehara et al. [36] for T4 molecules):

WT =X[1(1,Eg) X (DD x 1(0,1)](1,25g)](0,A1g) : (57

where the constant X is unknown up to now. For a g1ven value of J and R in the y; = 1 state, this operator has
matrix elements which are proportional to those of WSR so that we can introduce WSV phenomenologically by
varying ¢4 in the ug = 1 level (we proceeded in the same way to determine A). Once we have several Acy for dif-
ferent vibration—rotation clusters, then we can show that all these effective Acy4 stem from a unique spin—vibra-
tion couglmg constant X. For the time being we have only varied ¢4 in the excited vibrational state for one cluster,
PE2) Fy F 10 [section 4 example (C)], and one line, P(4) F; [example (D)]; these variations did improve the
theoretwal spectra but the values of Ac, are still tentative and not really adjusted. From the analysis of the great
number of well-resolved structures now available we expect to derive in the near future a precise value for the con-
stant X. Also the breakdown of R as a good quantum number mighi then be manifest in the hyperfine spectrum.
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4. Application to the analysis of supedfine/hyperfine
structures

In this section, we apply the results of section 3 to
derive several synthetic spectral structures in the vy
band and we compare them with observed spectra.
Two such spectra were discussed in ref. [12]; we shall
first give more details on these two examples, then we
shall display a few other cases for which a comparison
between theory and experiment has been performed.

The calculation is made according to the simple fol-
lowing procedure:

(i) In each vibrational state (i.e. the ground state
and the vy = 1 state), we consider the vibration—rota-
tion states which are supposedly close enough to inter-
act substantially through hyperfine interactions with
the states involved in the observed transitions. It will
naturally often be limited to the states belonging to
the same cluster but nothing impedes us from consid-
ering several adjacent clusters simultaneously or any
state belonging to the same J manifold if necessary.

(ii) Each vibration—rotation wavefunction is
coupled to nuclear spin wavefunctions in order to
construct the total Pauli-allowed wavefunctions which
were considered in the previous sections. All these to-
tal wavefunctions define the basis of the two subspaces
(upper and lower) to which w= restrict our calculation.
A shorthand notation for these total state vectors
will be {v3JRCY R IF) (M is ignored in the following);
the dimension of each subspace is noted d and is the
same for vy = 0 and for vy = I because of the selection
rules AR =AC=0(except forAJ=+ 1 and if S < in
one of the subspaces, which occurs only if J < 3).

(iii) The hamiltonian matrix is then calculated in
each of the subspaces and diagonalized. The matrix is
diagonal in the quantum number F and the eigenvector
will be noted |vy JRF7}and can be expressed as

lv3JRFT) = § o) s RCY g IF

In addition to the block diagonal form in F, non-zero
off-diagonal matrix elements appear only if Cyg K Cyg
contains the IRs A 1 Eg or Fzg, and the eigenvectors
are obtained by diagonalizing subblocks of small di-
mensions (a few units) even if the dimension d can
reach a few tens (actually some lug JRC}g IF) are al-
ready eigenvectors).

(v) The spectrum is deduced from the eigenvalues

and eigenvectors; in saturation spectroscopy, to each
couple of dipole-allowed transitions which share a
common Jevel (either upper or lower) corresponds a
line [37]. If the two transitions of the couple are iden-
tical, only two levels are involved and the line is located
at the frequency of the transition; if the two transitions
are different. the line is located half-way between the
frequencies of the two transitions and is called a cross-
over resonance. The intensities are calculated accord-
ing to the standard formulae for hyperfine compo-
nents in saturation spectra [37) in which the individ-
ual reduced transition moments are given by

. il RE 7y = (F,v3), (F',v3)
(w3JRFtiulu3 /' RF'} gai,d @

X (3 JRCIF lulv's ' RCIF'Y .

The reduced matrix elements in the coupled basis are
then related, as usual, (see eq. (17) of ref. [37]) to the
reduced element (v JRCIullvJ RC)which can be
considered as a constant for each manifold under study.

(v) The synthetic spectrum is then drawn after con-
volution of the above spectrum with a lineshape func-
tion taken as the derivative of a lorentzian whose line-
width (identical for each line) is adjusted for each ex-
periment. If the comparison with the observed spec-
trum is not satisfactory, the constants of the hamil-
tonian are changed and we go back to (iii) until agree-
ment is reached; 7444 and ¢4 have been determined in
this way.

The above procedure of calculation is referred to
by Harter [38] as a conventional synthetic approach
which yields accurate spectra and constants but does
not tell the physical meaning of the eigenvectors. On
the other hand, he has developed an analytic approach
which enables one to predict wha! pattern of levels
should be expected when the vibratinn—rotation split-
tings within a cluster are negligible in coiparison with
hyperfine matrix elements. This approach reiics on the
group theory which is generally used for atomic elec-
tronic orbitals but which can be applied to molecular
nuclear states in the particular case where the rotation
axis of the molecule is well stuck to a symmetry axis of
the molecule: the symmetry axis is then considered as
oriented in the laboratory frame and the nuclear orbit-
als together with the nuclear spins are used to build a
basis of Slater states in which an approximate hyper-
fine hamiltonian mairix is easy to write down. Harter
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[38] has shown that the eigenvectors of this hamil-
tonian are closely related to symmetry-adapied func-
tions in the groups S, X S, for tetragonal clusters or
S3 X 84 for trigonal clusters; this leads to a good phys-
ical understanding of the hyperfine splittings: the spin—
rotation interaction yields substates which are labeled
with broken tableaus (in Sy X S, or S X S3) and the
spin—spin interaction maodifies these splittings through
a tunneling effect between equivalent states which have
the same number of spins up and spins down. However,
there are some severe drawbacks in using this method
to deduce molecular constants: one introduces a phe-
nomenological hamiltonian for each case (a Dy, -invariant
hamiltonian for four-fold clusters and a Dg4-invariant
for three-fold clusters) with a set of effective param-
eters for each cluster; complications arise as the cluster-
ization becomes weak (frame transformation [42,44]

is then required); also the exchange of more than two
spins and diagonal spin—spin matrix elements require
adding morz parameters; altogether to do accurate
calculations, it may not be worth pushing the mod-

el too far since it starts with an approximate hamil-
tonian anyway; but it is worth remembering the level
classification in the ideal situation and the correlation
diagram. We shall try to give the reader the possibility
to estimate how the results which come out of hamil-
tonian matrix and which represent the “real thing”

can fit in this model.

To do so we shall give details which will be, for
example, the main effects of the respective operators:
successive changes in the patiemn of levels can be out-
lined after the introduction of:

(i) the vibration—rotation operators T4 and 7994,
(ii) the scalar spin—rotation operator,
(iii) the diagonal part of the tensor spin—rotation
and spin—spin operators,
(iv) the off-diagonal part of these operators.

The strength of the mixing shouid then be apparent
and help the reader to understand the intensities and
structures of crossovers. In addition to Q(53) F ?Fg
(example A) and to Q(38) FJE’F? (example B), we
shall show crossovers in the following clusters:

Q(54) AJFIE*, Q(41) F{ESF§ and P(82) FIOF0
(example C); then we shall show that crossovers also
appear to be fairly strong even in a low~/ manifold
such as P(4) (example D). In P(4) also, a recent spec-
trum with an improved resolution shows the structure
of a main line: the F, line splittings are essential to de-

termine the sign of the constant c,. Finally R(28) A,
shown at the bottom of fig. 1 is another case of re-
solved hyperfine components and will be our last
example (E) to be discussed.
(4) Q(53)F§F$

The possible spin wavefunctions are |F,,, /= 1),
{F,,,I =1} for an F, vibration—rotation state (which
appears to be Fy, and Fy,), and |Fy,, £=0), [y,
I=12){foran F, one (which appears to be F5, only).
The dimensions of the two matrices built in the basis
[v3JRC{g IF? are then twelve but each matrix can
readily be split into subblocks: the only subblocks
with dimension >1 are: one of dimension three
spanned by |vs, 53, 53, F§y, 1, 53), lvg, 53, 53, F§,,
0, 53)and |y, 53,53, FS,, 2, 53), one of dimension
two spanned by |vs, 53, 53, F§,, 1, 54) and lv;, 53,
53, Fg.,, 2, 54> and a last one of dimension two
spanned by |vg, 53,53, F$,, 1, 52) and |vg, 53, 53,

ige
F$..2,52). The two matricesin v; = O and v = 1

Do

sp-agces have exactly the same structure but a very im-
portant difference (fig. 3) stems from the fact that the
F, F, vibration—rotation splitting due to Tgy4 and
T5o4 is of the order of 13 MHz forv; = 1 and 180
kHz for vy = 0. Such a difference appears in all cases
and arises because 7,554 > fg44 and because 755, has
no nen-zero matrix elements in the ground state, The
influence of off-diagonal matrix elements between F,
and F, will then be almost negligible in the vy = 1
state and we shall focus on the ground state.

The scalar spin—rotation interaction alone gives
the pattern shown in the second column of fig. 2
which is already very close to Harter’s “case two”
since it spreads over 1100 kHz. The diagonal part of
all the tensor hyperfine operators brings quantitatively
small changes (third column) but, qualitatively, the
splittings between F le and F subcomponents are
an important fact which must be noticed. At this stage
and though hyperfine splittings are dominant, there is
no point in changing the labeling of states. The result
of diagonalization of the three subblocks of interacting
states is shown in the right column: in the 2 X 2 sub-
blocks, the levels are only slightly pushed apart and
the two coefficients of each eigenvector are of the
order of 0.96 and 0.28 so that they still can be labeled
more exactly with the quantum numbers of the orig-
inal coupled wavefurictions rather than with the broken
tableaus which correspond to a (\/5/2, /2{2) mixing.
On the other hand, in the (F = 53) 3 X 3 subspace, the



432 J. Bordé, Ch.J. Bordé{Srructures in the vs band of 328F¢

-385.5

=426.5

51F, 2

~659.5

=705.5 -705.5

Fie. 2.Q(3)F gFf. Patteins of energy levels in the v3 = 0 state at successive stages of the calculation; from Ieft to right: VR split-
ting; scalar spin—rotation splittings; diagonal effects of all hyperfine operators; post-diagonalization pattern, Energies are given in
kHz; u states are drawn with dotted lines. For the three (F = 53)g levels, we display at the right, in parentheses, the three compo-
nenis of the eigenvectors on the basis (IF22), [Fy 12, [F402).
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Fig. 3.Q (53)F2F1 . Energy level diagram for both levels of
Q{53) Fg—Fg and associated resonances, Only main resc-
nances and crossovers of interest for the present discussion
are represented.

mixing is so pronounced that the F, or F 2 character
and the value of the total nuclear spin are lost. The
components of the eigenvectors (with decreasing eigen-
values) can be compared to those of the broken tableaus
which diagonalize the spin—rotation matrix in an exact
-ase 2 (see table VII(c) of ref. [38]): they are respec-
iezly (025, —0.88, —0.38) versus (v/6/6, —/2/2,
—/3/3),(0.76, —0.05, 0.63) versus (\/6/3,0,~/3/3)
and (—0.58, —0.45, 0.67) versus (/6/6,v/2/2, —/3/3)
and one might be tempted to identify our eigenvectors
with the broken tableaus || 44, 1] ™ tyyand

II" 117 however the companson w1th fig. 17 of ref.
[381 ¥ brings the following comments: in our pattern,
diagonalization causes a state with F = 53 to cross a
state with F' = 52 and this does not appear in Harter’s
fig. 17; this flaw however is less pronounced in his pat-
tern of fig. 19 after frame transformation.

In order to compare the effects of various terms,
we give (table 4) the 3 X 3(F = 53) matrix in which,
for each matrix element, we separate the scalar matrix
elements (vibration—rotation + spin—rotation), the E
tensor spin—rotation, the F, tensor spin—spin and the
E tensor spin—spin matrix elements respectively; it
can be checked that the spin—spin interaction is only
a small perturbation compared to off-diagonal spin—
rotation terms.

* The values given by Harter for S, + and 2 in his caption to
fig. 19 and his table XI(c), do not correspond to his fig. 17;
one should probably read 2 = +0.2 instead of ~0.2.

Table 4
C,I
Fyg, 2 Fog, 1 Fag, 0
Scalar -106.5 - -
E spin-—rotetion -1.16 =73 -
F4 spin-spin -0.05 —0.004 -0.07
E spin-—-spin 3.2 -0.07 -1.2
F=353 84.5 -
-0.4 103
-0.2 -
2.3 -
v3=0 -90.5

In the vy = 1 state, each vibration—rotation level
is split into subcomponents exactly as it is in the third
column but, because F; and F, are separated by 13
MHz, diagonalization has negligible effects. As a con-
sequence, lines involving lower states which are not
affected either by diagonalization in fig. 2, will be
superposed (e.g. the three F; F =52, 53, 54 compo-
nents); on the contrary, if a state is pushed upward
(respectively downward) by diagonalization in fig. 2,
a transition which involves it will be shifted to the red
(respectively blue), e.g. Fys £ =53 is pushed upward
by 60 kHz and the associated line is 60 kHz left of
the Fy line (see line E in figs. 3 and 3).
(B) Q(38) FSEOFY

The possible spin wavefunctions for an E vibration—
rotation state are |E,, = 1) and |E,, 1= 2) so that the
dimension of the hamiltonian matrix is twenty in each
vibraticnal state; the coupled basis vectors are:

vy, 38,38, FQ,,1=1,F = 37,38 and 39},

lvs, 38,38, F),,I=1,F=37,38 and 39},

lvs, 38,38, EQ, 7= 1,F=37,38 and 39),

lvs, 38,38, EQ, 1 =2, F =36, 37, 38, 39 and 40)
lvs, 38,38, FY,, I=C,F=38),

lvg, 38,38, FY,, /=2, F = 36, 37,38, 39 and 40) .
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Fig. 4.Q(53) Fg F ‘15. Nomaogram [43] for the crossover lines.
Each of the ten crossover lines can be identified and the
crossover structure can be related to the pattems of levels
in the upper and lower states: the quadruplet is made of
two 40 kHz doublets separated by 200 kHz. Two crossover
Lines have negligible intensities which is explained by the
value 0.05 for the F; component of the F,2 eigenvector
(see fig. 2).

Since E, X Fy, = Fy +F,_, the tensor spm—rotatlon
mter,.ctlon can only couple F?g with F—),, while, since
Fog XF1; = Ay TE +F rzr, the tensor spin—
spm interaction can couple E with F w and Fy with
F7,,, if we compare with example (A), we have merely
added E,, states which can interact with F,,, states
through the F, tensor spin—spin operator only. The
coupled states with F'= 36 or 40 are then already eigen-

A

| -
e SO

— —N— -
! H
500 kHz ~36.006 MHz
— g SOOlkHz
-42.608 MHz -35.742 MHz -29.151 MH2

Fig. 5. Q(53)F2r$. Calculated (top) and observed (bottom)
saturation spectra. This spectrum has been obtained witha
free-running laser and the corresponding inewidth i 1s 20
kHz (hwhm). Measurcd detunings are from Q{45) Fz

vectors; states with £ = 37 span two blocks: one of di-
mension three with E| and Fy,, states, the other of di-
mension two with F;, and F,, states (and similarly

for F = 39); in the F = 38 subspace, we have two blocks
of dimension three: one with u states, the other with g
states. Asin (A), we display the v; = O pattern of states
at each stage of the calculation and one can see that it

Table 5
C I
Fyu, 1 Ey,2 Ey. 1
Scalar 204 - -
E spin—rotation -0.04 - -
F, spin—spin 4.5 9.8 3.2
E spin—spin 0.0005 - -
F=39 190 -
-0.05 +0.2
—0.003 -0.01
v3=0 200
-0.05
+0.007
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Fig 6. Q(38)F3E°F?. Patterns of energy levels in the vz = 0 state at successive stages of the calculations; from left to right: VR
splitting; scalar spin—rotation splittings, diagonal effects of all hypezfine operators; post-diagonalization pattern. Energies are given
in kHz; u states are drawn with dotted lines. For F = 38, the energies after diagonalization are on the right and, on the levels, are
displayed the components of the eigenvectors in the basis ((F22), {Fy1), IF»0)) for g levels and in the basis (|Fy 1), IED), |E2)

for u levels,
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is even much clossr to a case 2 than example (A); how-
ever, due to the numerical values of the isoscalar coeffi-
cients K (see the appendix), the E_-tensor interactions
have much smaller matrix elements and the major mix-
ing sterms only from the F,, spin—spin operator whose
constant is smaller than c4; finally the values of the off-
diagonal matrix elements are still of the order of the
difference between diagonal elements (see the =39
matrix in table 5); as a consequence, the mixing of basis
functions is substantial though the values of the energies
are not changed drastically after diagonalization.

The coefficients of the eigenvectors are displayed at
the right of fig. 6 and explain the very remarkable cross-
overs, between E and F, lines, shown in fig. 7. The
structure and intensities of these crossovers reflect the
the fact that, in £= 39 or 37 subspaces, the mixing is
rather between {E,,7=2)and {Fy,,7= 1) while in
the £ = 38 subspace, it is ratker between |Fy,, /= 1)
and |E,, /= 1). One can also note the particular mix-
ing in the {(F = 38)g matrix where, after diagonalization,
Flo stays almost pure while only {F,,, /= 0)and
lF-,,.I 2) are really mixed (a comparable mixing
tween these two states occurs in the v; =1 level since
they are directly coupled by the F-,‘,-tensor spin--spin
operator); fortunately F]n and Fqg are substantially
mixed in the F = 3% and F = 37 subspaces so that cross-
overs do occur, as in example (A); however these cross-
overs are blended with the hyperfine components of
the Eg vibration—rotation line.

) £s
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. \
, .
1
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Fig. 7. Calcuiated (top) and observed (bottom) spectra for
the Q(;S)F%E 3 trigonal cluster. This spectrum has been
obtained with a frequency offset-locked laser [2} and the
Brewidihis 5 kHz (hwhm).

(C) More crossovers and superfine structures

In examples (A) and (B), we gave details about two
of the crossover structures used in ref. [12] to deter-
mine 744 and cd, the other structures we used were
in two other F$ F2 clusters, of Q(51) (which can be
seen in fig. 11) and of Q(55), respectively, which are
very similar to case A, and another tetragonal cluster,
Q(54) AJFIE*, which we display in fig. 8. This cluster
is simpie since F 2 VR states are g only and do not inter-
act with A, and E which are u only. The crossovers
arise because A, and E are conpled through the E-ten-
sor spin—rotation interaction only and are thus very
sensitive to the value of cd In fiz. 8, one can see an-
other cluster Q(41) FJE>F$ analogous to the Q(38)
one of example {B), m whmh a crossover appears, sim-
ilarly, between the ES and F lines. However, the
structure of this crossover wluch is a doublet with 40
kHz splitting is not resolved in the figure.

With the P(82) F5 0F i~ cluster shown in fig. 9 we
have new interesting features: firsi the crossover does
appear to be a quadruplet, second the main lines F,
and F, exhibit many bumps which were not seen in
the previous examples. The theoretical spectrum drawn
with the known constants did not reproduce well these
bumps of the main lines and we introduced phenome-
nologically the tensor spin—vibration operator as a
correction to the tensor spin—rotation interaction in
the u; = 1 state; since these two interactions give the
same hyperfine structure this is indeed equivalent to
varying ¢, in the upper state. The synthetic spectrum

Fig. 8. Portion of the SFg saturation spectrum obtained with
the P(16) linc of the CO, waveguide laser [ 7] illustrating two
different cluster patems: the tetragonal Q(54) A2F2E4 cluster
with a 2 to 1 superfine splittings ratio and the trigonal
Q@I FIESFE cluster with almost equal splittings. Crossovers
are marked wizh an X and occur half-way between components
of identical parity: the crcssover between Q(54) Aoy and By is
clearly resolved as a doubkt whereas the structure of the cross-
over between Q (41)F1 and ES is umesolved Frequency de-
tunings :ue in MHz from the Q(38)E line at 28.412 582469
THz [ii
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Fig. 9. SFg saturation spectrum ranging over 250 MHz on either side of the P(22) CO; laser line. Frequency detumngs are in MHz
from the reference line at 28.251 957 355 THz [11]. Two different cluster patterns are illustrated: the P FL° 19 tour-fold
axis cluster and the P(84) AgFgP 1A§ three-fold axis cluster with three equal splittings.
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Fig. 10. Synthetic spectrum of P(82)F2°Fi° cluster drawn with cg{vs = 1) = 1.05 ¢4 (va = 0). hwhm = 23.5 kHz,
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shown in fig. 10 is drawn with ¢4 (v5 =0) =4.25 kHz
and Aeg =c4{uy =1) —c4(v3 =0)=0.051cy(v3 =0)i.
The comparison between theoretical and observed spec-
tra is very satisfactory but is only qualitative: the cali-
bration of this early recording did not really enable us
to measure precise splittings in the spectrum. We must
also point out that we could not determine the sign of
¢g4 from this cluster and a very similar synthetic spec-
trum can be drawn with ¢4 (v3 = 0) = —4.25 kHz and
the saine Acy. The sign of ¢4 will be determined in the
following example. Finally one can notice that the in-
tensities of F1° and F3° lines are not equal, as one
would predict from the nuclear statistical weights; this
is understandable because linas involving levels which
are perturbed by the mixings lose much of their inten-
sities which go as the fourth power of the coefficients
of the eigenvectors. Furthermore the presence of cross-
overs modifies the observed intensities. A typical exam-
ple of this phenomenon is shown in fig. 9: the P(84)
Al FZF"A cluster is very tight (830 kHz wide) and,

Q 51
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because of the important hyperfine mixings, the nuclear
statistic intensity ratio of 10 to 6 between A, and F
lines is not observed. The observed intensity ratio is
well reproduced theoretically; this shows that in such

a case a superfine fit alone cannot be worked out satis-
factorily, though only superfine splittings are ob-
served, and that one needs the hyperfine operators to
give a correct account of the intensities.

(D) P(4)

The P(4) manifold is made of the four lines
AF,EF, which do not form a cluster and spread
over 60 MHz; only the lines A; F E could be reached
with our waveguide laser and can be seen in fig. 11.
Crossovers are observed between A; and F;, between
A, and E and between F; and E. They arise because
the coupled basis functions are indeed strongly mixed
in the ground state: to give an idea, the eigenvectors
of the (F = 4) g subblock have components of the order
of 0.75, 0.60, 0.10 and 0.25 in the basis |0, 4, 4, Aggs
047,10,4,4,F5;,2,4),10,4,4, F5,, 0, 4> and

Py

235.

e
251.10 | 25751§ r
2
25409 26027 MHz

%

\

i 245053 245.160

50

Fig 11. Part of the P(4) manifold. Top: supersonic beam spectrum with bolometric detection [40]. Middle: saturation spectrum
obtained with a free-running waveguide laser in a room-temperature cell (detunings are in MHz from Q(38)E®). Bottom: The
P(#)F; component recorded with a frequency offset-locked waveguide laser is compared with a calculated spectrum (in the middle
spectrum this line is blended with an unidentified F; line). Crossover resonances are labeled by Xs: X; and X, are crossovers be-
longing to the Q{5 i)FeF- system; X3, X4 and X5 are the P4 crossovers respectively in the center of the (A} F;)(AE) and (F ("IE)

intervals.
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i0,4, 4, Flo, 1,4). In the vy = 0 hamiltonian matnx
of dimension 22, only the four states with F=J *
are not mixed; in the v; =1 matrix, eigenvectors w1th
the same Cyy and different / are also substantially
mixed: e.g. the two functions |1, 3,4,E, 2, 2)and
11,3, 4, E, 1, 2) are mixed with coefficients equal to
0.88 and 0.47. In this low+/ example, the effects of
spin—spin and spin—rotation operators are comparable
in magnitude and diagonal matrix elements of tensor
hyperfine interactions are comparable to off-diagonal
ones. The effect of diagonal matrix elements of the
tensor spin—rotation operator has been seen for the
first time when we tried to reproduce the hyperfine
structure of the P(4)F, line (fig. 11); these matrix
elements are non-zero because the product of repre-
sentations F; X F contains E; this fact enables us to
choose the sign of ¢ 4: the synthetic spectrum in fig_ 11

is drawn with ¢y =+4.25 kHz and ¢4(v3 = 1) = 1.05 ¢,.

Again this Ac, certainly stems from the tensor spin—
vibration interaction -but we wait for the analysis of
more structures to derive a tensor spin—vibration cou-
pling constant from our effective Acy. Indeed what
happens, hidden in the three lines of fig. 11, is more
complicated than just three hyperfine components
with F=J,J £1: first Flg and F;,, components are
well split, second, owing to the mixings, some cross-
overs and forbidden lines are strong so that the spec-
trum is made up of 16 non-negligible lines (whose fre-
quencies and intensities are sensitive to almost all con-
stants) and one should not be abused by the simplicity
of three observed lines. In the final example to come,
the splitting of a vibration—rotation line into hyper-
fine components reflects much more closely the de-
' composmon of Jinto F.
(E)R(28)A3(fig. 1)

This line belongs to the trigonal cluster AOF,F ! AO
but, in this J-manifold the clusterization moves rapld-
ly to fetragonal clusters: the lines next to our cluster
are F' + E! [4] (which is neither a trigonal nor a
tetragonal cluster) and are not that far; so, we have
added the E! states to our basis and, as in P(4), we
do not work within a Harter’s cluster. Finally, the
only states that can strongly interact are E1 A-, and
F! 1; this leads to two 21 X 21 matrices. In the synthetic
spectrum of this same line reported in ref. [2] (as well
as for the two other A, lines in P(33) and P(59) mani-
folds {2,9]) no matrix had been diagonalized since
only scalar hyperfine operators had been used; how-

ever, with the improvad resolution of fig. 1, off-
diagonal terms are needed to fit the spectrum; the
only lines which are not affected by diagonalization
are the extreme left and right lines since only A, vibra-
tion—rotation states can be associated with /= 3 and
exhibit subcompanents with 7 =J * 3; all the other
hyperfine components are shifted by a different
amount for each component. Evidence of that fact
appears in the spectrum of fig. 1: without tensor hyper-
fine interactions the three splittings of [(A;,1=1,F),
(A,,{ =3, F)] doublets are identical (and equal to 0.8
kHz); the additional splittings due to tensor interac-
tions are 0.8 kHz for F = 27 and 29 but only 0.3 kHz
for F = 28. The details of the contribution to these
additiomi splittings show that the role played by the
vibration—rotation state which does not belong to
the cluster is as important as the role played by the Fz
state which does belong to the cluster.

5. Conclusion

As a conclusion, let us point out that, if the various
patterns of superfine clusters displayed in this paper
confirm and illustrate the tunneling structures associ-
ated with internal tumbling motions, we have also
shown the impossibility to consider separately super-
fine and hyperfine structures in an actual molecule.

We have limited this demonstration to cases where

only the ground level has hyperfine splittings com-
parable to or larger than the superfine structure but
our approach applies equally well to cases where a dxaa-
onalization is required in both states (e.g. R(29)F —F2
in fig. 1). Among the numerous spectra recorded recent-
Iy at very high resolution (=kHz) with waveguide CO,
lasers and which have not yet been apalysed, there isa
large number of lines for which both levels correspond
to the limit case 2 of Harter and Patterson and which
exhibit so-called “superhyperfine” structures [38].

The present paper is to be considered as a prelimi-
nary account of a larger piece of work that should
keep us busy for the next few years: a systematic, de-
tailed analysis of all the specira now available in order
to provide a complete understanding of the internal
dynamics of nuclear spins interacting together or with
the molecular field within a rotating and vibrating mol-
ecule. The large number of spectral structures which
have to be reproduced with a rather limited number of
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hyperfine and fine structure constants is a stringent
test of internal consistency. The introduction of new
terms in the hyperfine hamiltonien might be required
but in any case the only rigorous way to achieve this
program is to perform the diagonalization of large
enough hamiltonian matrices with 2 unique set of mo-
lecular constants as described in this paper.

Note added in proof

Allowing for a much wider range of possible values
for Acy we have recently obtained a substantially im-
proved fit for the P(4) F, line with a negative ¢4 =
—4.25kHz and a &cy = 3 kHz. Such a large Acy is
consistent with the Ac used for P(82) and the relation-
ship between a unique constant X and the parameters
Acgy. Calculated and observed intensities are now in
good agreement, which is not the case in fig. 11. A new
figure will be published in a future addendum to this

paper.

Acknowledgement

The authors would like to thank Drs. G. Tarrago
and G. Poussigue who provided them with the values
of off-diagonal isoscalar X coefficients. They are also
grateful to Dr. F. Michelot and Professor W.G. Harter
for critically reading the manuscript.

Appendix: Relevant numerical values
A. 1. Hamiltonian constants

44 = 5.7Hz [12], Ty44 = 1125.58 kHz [2],

€, =—527kHz [41], c¢;=425kHz.

a

To be consistent with the definition of ¢, given in eq.
(13), one must take half the value given in ref. [12].
The sign of ¢4 is determined from the recent observa-
tion of the P(4)F, line shown in fig. 11.

d,=9.82kHz [41], d,=3.47kHz [41],

A4=44KHz [2].

A.2. Off-diagonal isoscalar coefficients [42]

These coefficients satisfy the relationship:

Jy Ja fs

= (_1W1tFatI5+C1+C+C3
n1C1 naCa II3C3 ( l) i !

Jo Ty T3
anCz mCy n3C3 °

We shall write K,/ & %0 asK(,11Cy,€,myCy).
K(53,6F,E, 6F )= ~0.05,
K(53,6F},E,6F,)=0.08,

K(53,6F,,E, 6F,) =005,

K(53,6F,, F,, 6F;) = —0.003,
K(SJ, 6F1, F?_, 6F2) =-0.001 .
K(53.6F,, F,, 6F,)=—0.0008 ,

K(38,0F,, E, OF) = ~0.000064 ,
K (38, OF, E, OF, ) = 0.000069
K(38, 0F,, E, OF,) = —0.000069 ,
K(38, OE, E, OE) = 0.60023 ,

K(38,0F,, F5,0F,)=~008,
K(38,0E, F,,0F,)= 0.1,
K(38,0F,, F,,0F;)=0.08,
K(38,0F,, F,,0F,)=—0.13,

K(54,24,,E,4E)= 0054,
K(54,4E.E, 4E)=0054 ,

K(4,E.E,E)=-0.14,
K(4,F,,E,F)=-041,
K(4,F,,E, F,)=012,
K(4,A),E,E)=028,
K(@4,F(,E,F5)=0.14,

K(4,F|,F,,F)=-0.13,
K(4,F,, Fy, F5) =023,
K(4,A;,F,,F)=0.17,
K(4,E,F,,F;)=0.14,
K(4,E,F,5,F5)=0.32,
K(4,F;,Fy,F5)=033,

K(28,1E, E,04,)=0.04,
K(28, 1E, E, 1E)=0.06 ,
K(28,1F,, E, 1F|) = —0.010,
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K(28,04,, F,, 1F,)= 0.10,
K(28, 1E, F, 1F{) = -0018 ,
K(28, 1F{, F,, 1F})=—0.16.
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