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We present a fmt detailed account of OUT theoretical approach to reproduce observed superfme and hyperfme stnw 
tures in the “a band of SF, and we display various obsewed and calculated patterns of superfime clusters exhibiting hyper- 
fme effects. The main operators of the hamiltonian are derived and the associated consta.n:s are related to molecular param- 
eters. We show that, owiling to the off-diagonal ierms in the hyperfme hamiltonian, a mixing occurs between vibntion- 
rotation states with different point-group symmetry species. As a consequence, superfme and hyperfme stmctores have to 
be considered simultaneously and hyperfiie hamiltonian matrices connec:ing severa! vibration-rotation states need to be 
diagonalized to reproduce the spectra We analyse in greater detail a few typical examples from which several molecular 
constants have been determined (e-g_ tw, cd). For the fmt time, the sign of cd is obtained. Also an effective change, Acd, 
is found between upper and lower levels which can be readily interpreted as a manifestation of the tensor spin-vibration 
interaction. 

1. Introduction 

During the past fifteen years, +Lhe resolving power of infrared spectroscopy has been multiplied by a factor over 
lo6 from the gigahertz to the kilohertz level. Favourite test molecules for this research have been spherical tops 
such as CH4 [ l] , 0~0, and especially SF6 [2-131, partly because of many favourable coincidences with laser 
lines but also because of ‘Je beauty of the formalism developed for these molecules and f@y because of the 
boost given to their study by laser isotope separation programs. For these molecules the considerable progress in 
resolution which has been achieved, has revealed new structures of tremendous richness and complexity. This 
progress is illustrated by fig. 1 where spectra of the v3 band of SF6 at increasing levels of resolution are displayed. 
At the lowest resolution (top of the figure) we fmd the band envelope recorded by Brunet and Perez with a Girard 
grid spectrometer having a 0.07 cm-l resolution [3]. This stage only shows the existence of P, Q and R branches 
as well as the presence of-many hot bands. The next step, which requires either semiconductor diode lasers or 
Fourier transform spectroscopy exhiiits the tensor fine structure of each J manifold [4]. This tensor siructure is 
only partly resolved owing to the Doppier width limitation which leaves many clusters of lines unresolved. To go 
further and resolve the structure of these clusters (superfine structure) sub-Doppler methods such as saturation 
spectroscopy are required. Superfine splittings have been observed since the very beginning of saturation spectro- 
scopy and the Q(38)FiE’Ff triplet in coincidence with the P(16) COP laser line is the most familiar example since 
it was fmt resolved in 1969 [5]. The fact that this hiplet was not published in the open literature until 1977 
[6,7] shows clearly enough the lack of appreciation of the importance of these structures over .that period. The 
underlying physics was not understood until the work of Harter uld Patterson [14] following earlier ideas of 
Dorney and \Vatson [ 151. They showed that clusters had their origin in a spontaneous breaking of the point- 
gIOUp SyrUmetIy Td or oh into a lower Symrne.try (C3 or C4 subgroups}. Since there are 6 (respectively 8) eqUiV- 
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Fig. 1. Structure of the YJ band of %F, at increasing levels of resolution: (a) Room-temperature band-contour of the PQR type 
obtincd with a Girard grid spectrometer [33. (b) Doppler-limited semiconductor diode laser spectrum exhibiting the tensorfme 
stmcturc of&manifolds and unresolved clusters 14). (c) Part of sturation spectrum obtained xith a free-mnnin waveguide CO2 
Iascr (resolution ~20-40 kHz [7,8]) and e.xhibiting the superfme structures of a trigonal clus:er (R(28) AiF:F,A$ and of a tetra- H 
gonad clusier (R(29) Ff F:). (d) Sawration specttum obtained with a frequency-controlled laser spectromstcr (resolution --I kIiz 
[lO,I3]) exhibitizag the hyperfiie stnrcture of the R(28) Ai line and the splittings betweenZ= 1 andZ= 3 components. The abso- 
lute frequency of thr R(28) AZ line centeris 28.164 691306 THz [ll J. 
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alent C4 (respectively C;) axes of rotation;&& results in a 6 or &fold remaining degeneracy. The tunneling be- 
tween these equivalent axes of rotation (tumbling motion) tends to restore the original symmetry and splits the 
clusters into individual components which are labeled by representations of the original group. The corresponding 
supertime structures are doublets, triplets or quadruplets with well-defmed patterns that will be illustrated in this 
paper (e.g. the quadruplet R(28) A!FiFiAy in fig. 1). At the highest reso!ution (with a frequency-controlled 
laser spectrometer vibration-rotationlines exhibit their magnetic hyperfme structure [1,2,9, lo] as Illustrated 

b with the R(28) A, line of fig. 1. As we shall see.iu greater detail, these magnetic hyperfme splittings occur be- 
cause the nuclear spins are sensing magnetic fields of various origins in the molecule. The major surprise in these 
spectra came from unexpected crossover resonances which have now been successfully interpreted as forbidden 
lines coming from a mixture of states by off-diagonal contributions of the hyperfine hamiltonian [2,12]. The 
hyperiime interactions violate the molecular point-group symmetry species of vibration-rotation states and re- 
spect only the Pauli principle. The breakdown of the molecular point-group produces spectacular structures and 
splitt&s (such as Flu-Fig or A,, -Al, splittings) and the detailed study of these new effects is the main subject- 
matter of this paper. Let us emphasize that, as a consequence of these mixings, superfme and hypertime structures 
cannot be treated separately. 

The kilohertz resolution illustrated in fig. 1 in the case of the R(Z) At line has recently been extended to the 
full 600 MHz tuning range provided by CO? waveguide lasers around each CO, laser line [13]. As a result, a great 
number of hyperiIme and superhypertine structures have been recorded and are presently being analysed. In the 

’ present paper we shall limit ourselves tc basic considerations and to a presentation of the methods and of the for- 
mulae which have led to the results published in ref. [I 2]_ Only a few early examples, comprising those given in 
ref. [ 121, will be discussed here, mainly for the sake of illustrating various situations encountered in the spectra. 

In 1978 a paper by Itano 1161 appeared on the calculation of hyperfme structures in tetrahedral molecules 
and we extended his treatment from T, molecules to the case of an 0, molecule such as SF,. Also in 1979, a 
paper by Michelot et al. [17] gave the formal expressions of possible hyperfme operators and their matrix ele- 
ments in spherical-top molecules. Along the presentation of our calculation, we shall make extensive use of the 
material contained in these two papers and this paper can somehow be considered as a link between the two ap- 
proaches. 

It is also obvious that many other previous works on nuclear hyperfnie interactions in molecules have inspired 
us and a good review of these theoretical and experimental results has been published by Dymanus [ 183. Here we 
shall strictly focus on the u3 band of SF, : in section 2, we give details on the group-theory material that we use; 
in section 3, we establish the hamiltonian operator; responsible for the splittings under study and finally, in sec- 
tion 4, we display and analyse several examples of hyperfme effects iu fine and superfine structures. 

2. Group theory and general conventions 

We shall follow the basic idea [19,20] that the invariance group of a quasi-rigid molecule is LO(3) X G when 
no external field is applied; LO(3) is the full rotation group of the space-fired frame (SFF) and G is the point 
group of the equiliirium configuration. In the case of SFg, G is the group Oh and we shall make ours the number- 
ing of the nuclei specified in ref. [17] as well as the deftitions of the operations and of the Irreducible represen- 
tation matrices described in refs. 121,221 f. These are consistent with the exhaustive work on the Racah algebra 
of the point group 0 published by Griffith [23], so that we shall be able to use his tables of V, W and X coeffi- 
cients (analogous to the Wigner 3j,6j and 9+ symbols respectively). The point group 0, will often be considered 
as a subgroup of the full rotation group “O(3) of the molecule-f=ed frame @FF) and it will be convenient to 
introduce irreducible representations (IRS) of M O(3) which are oriented with regard to this subgroup [24] : the 
IRS of LO(3) will be the standard ones, with spherical basis and active rotation matrices [25], and will be !sbeled 

* In ref. 1211, one shouid readainstead of 3 in the matrix ED(C,). 
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with J,, where r is the parity character g or u. Irreducible tensors and IRS of LO(3) X G wih then be specified by 
(J,, C’) or (J,,.Z:, nC’) if we deal with quantities which are also tensors in LO(3) X kf O(3) (rotational wavefunc- 
tions are such quantities for which we have .Z, =J:l: K$$ ‘rnc) or I J$, .Z, nCo>). 

The molecular wavefunctions can be written as a product of two vvavefunctions: the rovibrational wavemnc- 
tion \k vR and the nuclear spin wavefunction Q: v9 which will both be, separately, irreducible tensors. The irreduc- 
ible tensors q,, are unamb@ously labeled with the total nuclear spin Z and the Oh syrmnetry species Cs; the 
correspondence between Z and C has been worked out independently in refs. [26] and 1431 and the explicit ex- 

ii Cl pressions of the components rk,s&~I~ 
be foundin ref. [17]. 

or ]Z&Cso), as linear combinations of the functions II, 1,6 I$, rnf) can 

We shall also use the classScation proposed by Berger [27] for ener,v leveis: the symmetry species of \k,R 
will be (J,,Jif&), where$ - J, in the ground vibrational state and .Z:f = R,, ,, in the u3 = 1 state; iJ?vR will 
then be written as ]J$f, R,, aCRu, u3, a), where 0: gathers all +&e unspecified quantum numbers. The molecular 
wavefunction must satisfy the Pauli principle and only combinations of \IrNs QvR which are of symmetry species 
AZ” must be considered. Akin to that coupling in the point group Oh, we shah couple 9RS and *VR in LO(3) 
to obtain the total angular momentum F = I + J. Finally a total molecular state vector will be written as 

Operators will also be symmetry-adapted; vibration-rotation operators Tm and nuclear spin operators Txs 
can be separately written as i-reducible tensors and matched to give a totally invariant hamiIto_nfan of symmetry 
species (Og, A!,); in order to build totally invariant operators or Pauli-satisfying wavefunctions; one just needs 
to apply stand&d rules for Kronecker products of IRS. Once we have quantities written as irreducible tensors, we 
can use ah the power of Racah algebra to perform the couplings and compute matrix elements: 

(I) The matrix elements of an operator <,I202 (‘slcs) satisfies the Wigner-E&art theorem: 

(1) 

This is consistent with eq. (14) of ref. [17] since, for Oh, covariant and contravariant components are identical. 
(To make formulae less cumbersome, from now on we shall omit r whenever possible, e.g. in 3j symbois which 
are SO(3) 3j symbols if T~ X T-) X r1 = g and zero if not.) 

(II) The couPJ.ing of two irrehucible tensors T(Jrr~,cr) and TtJ2+~*C2) will give irreducible tensors (J,, 0 ac- 
cording to 

In the case of wavefunctions, we shall take in the above formula JzT2 = I,, J, = FT1 and C = AIU; in the case of 
two operators Eva and HNS leading to a total hamiltonian operator, one must haveJ, = Og and C = Alg which 
implies Jlrl E JzT2 and Cl = Ca; in this case, (2) is related to the double scalar product as mentioned in ref. [16] : 

(3) 

(III) The matrix elements’of such an invariant operator in the coupled basis are given by 
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The reduced rnatriv elements of nuclear spin operators will be cahculated by eq. (1); the reduced matris ele- 
ments of rovibrational operators can be found in the abundant literature on spherical-top molecules 1291; an irn- 
port+nt,,discussion on the phase, ofi$ssf reduced matrix elements is developed in ref. [30]. If the operator 
H:‘d ,c ) can be written as H&gR n c ), its reduced matrix e!ements are given by [31] : 

(J, RnCRujdIH$~R”r~nc~ liJ’,Rh’C~~kp’) 

= (-1)R I$$ ,;;, $j, <J,RaIIH~J~,R”)IIJ’,R’or’). (5) 

in the course of this work, we have thus needed isoscalar coefficients K,lfc, $ .fcn whose values are not reported 
in the literature when nlCl f n2C2 and we give in the appendix the values of the relevant coefficients necessary 
to understand the examples presented in section 4. Now that we have defmed the mathematical tool that we want 
to use and which is completely consistent with the analogous formulae given in ref. [ 171, we want to write down 
the hyperfie operators, explicitly, as in ref. [16], and transform them to expressions suitable for that tool. 

3. The vibration-rotation and hyperfme hxmiltonians 

The effective molecular hamiltonian that we use is the sum of a vibration-rotation hamiltonian and of a nuclear 
hyperfme lzmiltonian. The vibration-rotation part is the usual contact-transformed Darling-De&son expansion 
which has been described extensively in the literature for the ground state and for a triply degenerate excited state 
[28-301. The nuclear spin interaction hamiltonian will be derived in a manner similar to that followed by Itano 
[16] for Td molecules; we shah obtain expressions consistent with the effective hyperfme hamiltonian deduced 
from the real hamiltonian through one electronic contact transformation [30]. Actually it is convenient to split 
the effective hamiltonian into three parts: 

H=&?n +HvR+Hhyp > (6) 

where H& 8 re resents our “zero&order” vibration-rotation harniltonian for which we assume that we know the 
eigenvalues EvR and in addition we shall keep in H& only terms that do not lift the spherical degeneracy: all 
states with the same J, R, l3 and u3 belong to the same & . We shah then take this E& as our zero energy since 
we are only interested in narrow spectral structures, within a givenR-manifold. For the spectra that we want to 
reproduce, all temts which do not split the substates of a givenR-manifold would result in a mere translation of 
the spectrum and we suppose that they are gathered in H& . 

3.1. l?ie vibration-roration hamilronian H, 

Hm gathers all the vibration-rotation (VR) terms that we need in order to calculate a correct pattern of VR 
levels. It is easy to calculate this pattern in the u3 = 1 state: the tensorial splittings between VR lines have been 
fitted with the spectroscopic parameters given in ref. [Z] and with off-diagonal corrections; the hamiltonian con- 
stants that can be derived from this fit yield a tensorial splitting of levels ti the us = 1 state only, so that the pat- 
tern of levels can be taken identical to the pattern of VR jines. Practically, this pattern can be calculated satisfac- 
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torily for our purpose with the seeondarder fourth-rank tensor T124 (in Robiette’s notation [32]) and offdiag- 
oral corrections in R only; the hamiltonian constant cZ24 is related to the spectroscopic parameter g (rZ24 = 
-9a(7/12)1/2) and is equal to 1125.55 kHz. 

In the ground state, the operator Tzz4 has no non-zero matrix elements and the first operator in the hamil- 
tonian expmion which gives rise to 2 tensorial decomposition of the rotational ievels is the secondorder fourth- 
rank tensor centrifugal distortion Tu44. Its constant tw wzs not known until our work on hyperfime interactions 
end has been determined in ref. [12] from the structures of five hypefime-induced crossovers; its v&e is very 
smah, 5.7 Hz, in agreement with theory [39], but its role is essential since it governs the stren,g of the effects of 
off-diagonal hyperfme terms. 

The operators T234 and TsM have the following matrix elements in the VR basis: 

(J,ilfJRnC~~jlg I Tp4 lJ,MrRnC~jl3) = 6u31 <JRnCl T224 lJRnQ , 

with 

(7) 

(v, = 0 JRnCITw j u3 = 0 JRnC) = ; (+1/z [(U - 3) . ..@I + 5)] II2 (-I)‘F;I ,$ ,$ , 

(Uj = 1RRnCIT~Iuj = 1RRnC) = (?)I/? [R@ + 1) _ lo] i(= - 3)-(m + ‘11 *‘2 (_l)+il n;n;, 
2R(zRR2) 

(u, = 1 (R + ~)R~CIT~,&J~ = 1 (R + l)RnC) 

(uj = 1 (R - I)RnCl TM4 lu3 = 1 (R - I)RCn) 

= (+)I/‘(@ _ ;R + j) 

Since these operators do not act on nuclear spin wavefunctions and do not lift theMJ degeneracy and since 
the coupled basis is obtained through an orthogonal transformation, we have the same expressions for the matrix 
elements in the coupled basis: 

‘(~~)~f’z’~;(Rn~R~S?A2~~3aiT224 or TM j(J’I’)F’Mi;; (R’n’C~C~)A3,v3a’) 

= 61i’~Jr.“C,Cjz6FF’6nll;~~~ (JR~zC~U~LXIT~~~ or T,,lJ'R'n'C~wp'> . (9) 
The coef&ients Fi ,$,$ which appear in formulae (7) and (8) have been tabulated by Krofrn [33]; their 

numerical values displa$ the clusterization of levels studied at length by Harter and Patterson [14] _ Clusters are 
particularly tight towards the ends of R manifolds 2nd become tighter as R increases; within these tight clusters, 
vibmtion-rotation states will be substantially mixed when coupled by off-diagonal matrix elements of nuclear 
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hypertine operators. Since all vibration-rotation states within a cluster have different symmetry species C there 
is no way that this mixing can occur owing to the vibration-rotation hamiltonian alone. 

3.2. Rile spin-rotation hamiltoninn 

At the nucleus k; the magnetic field created by the relative motions of the electrons and of the other nuclei 
can be related to the total vibration-rotation angular momentum J through a tensor C” and the interaction be- 
tieen the magnetic moment of that nucleus and that magnetic 5eld can be expressed as: 

&/I; - 
SR - -p 

k.Bk= _gIpNfk.Bk=_~k.ckJ, 
(10) 

where the components of the nuclear spinIk and of Jas well as Ck are expressed in the space-fmed frame (SFF). 
Following what Ozier et al. [34] did for T, molecules, we can easily derive the expression for Ck in the mole- 

c&e-fued frame (MFF). For obvious symmetry reasons, the magnetic field created by.l, (respectively J, or J,,) 
wili be directed along the z (respectively x or y) axis. in addition, for a nucleus e.g. on the z axis, J, and J,, will 
create identical effects; for nuclei 1 and 6 we can write: 

CL 0 0 

C1(MFF)=C6(MFF)= 0 CL 0 . 

! 1 

(11) 

0 0 Cu, 

SimilarIy, for the other nuclei, we have: 

c,o 0‘ $0 0 

C’(MFF)=C4(MFF)= 0 C, 0 , C3(MFF)=C5(&lFF)= 0 CL 0 . (12) 

0 0 c,, (0 0 c,, 

Each of these tensors can be written in the form 

@(MFF) = c,l+ f c&MFF) , (13) 

where c, and cd are called respectively the scalar and the tensor spin-rotation constants ‘?;lis the identity tensor 
and the $(MFF) are given by: 

10 0 

e’(@lFF) = &@IFF)= 0 1 0 , &kfFF) = e4(MFF)= 

i I 0 0 --2 
e3(MFF) = &@fFF) = (14) 

These &jVFF) satisfy the usual properties: they are symmetric, traceless and therefore transform under rota- 
tions according to the J = 2 representation; moreover their sum is zero. 

The scalar part of Ck(MFF) is of course invariant in the transformation from MFF to SFF and gives rise to 
the scalar spin-rotation interaction 

I With this deftition of cd, one mUSt take lCdl = 4.25 kH2; the value given in Ief. [ 121 is t\ViQ cd_ 



To obtain SFF components of the tens&al part of C”, ek , we first derive spherical components 
$)“@fFF)@ = 0, + II f 2) from the MFF Cartesian components e,ka~@IFF)(a,B=x,u,t) givei? in (14); Cook 
&d de J_IJ& [gj] have given the relationship between the two sets of co.mpOneilts in the general CaSe Ofa rank- 
two tensor TC-) : 

@ = 6-112 [33T_ - (TL_ i Try + T_)] , . - Y$y = + $ [r, + c’_ f i(Tjz + Try)], 

7$j = i [T,, - TtY + i(Ta, + T&)J . (16) 

In our case this reduces to 

$2 = J@ e;,- ; Eye = 0 ) @ = : (~~~~ - & (171 

and the only non-zero components are 

l “@jFF)= l/a (x;= I and6), 

@$$FF) = m, e$?&iFF) = ; (k = 2 and 4) ) 

@‘)“@-IFF) = m, @@lFF) = -f (k = 3 and 5) . (18) 

The SFF components can now be obtained through the rotation matrices 

where we take the inverse rotation -+I since we use the active representation. We shall couple the rank-two ten- 
sors &)“(SFF) with the rank-one tensorl(t) to transform the tensor spin-rotation interaction from 

IV& = -fhcd p Zkek(SFF)J (20) 

to 

W& = 4 &3 hcd F Z(l)k. [E(~)~(SFF) X J(l)](i) , (21) 

where the factor 4 accounts for the change of normalisation of the tensor ck and is given in the appendix 
of ref. [35] _ 

Now we want to take advantage of the point group symmetry and use irreducible tensors in LO(3) X G and 
not in LO(3) only. We shall therefore use the orthogonal matrix CCu Ik) which relates quantities labeled with one 
nucleus index k to irreducible O,, tensors: 

effk(SFF) = c% (C, ol&,e$“(SFF) _ (22) 

As pointed out by Itano [16], the matrix elements (Co I/c) are identical to the coefficients of the symmetry- 
adapted nrlclear spin wavef&ctions with one nuclear spin opposite to the five others, that is to say with &fI = f 2 
(table 1). In the MFF frame, the matrix (C, alk) enables one to define quantities [eiq]h*)(~FF): 

[e;Q]$2)@IFF) = T K, (r jk) E;“~@$FF) , (23) 



NW) I 2 3 1 5 6 

4 10 ii& II& II& l/4 II& 
% 1 II& -l/2& --l/2* -l/2& -1/2%f3 u-..E 
Es 2 0 -l/2 l/2 -l/2 l/2 0 

Flux 0 0 l/d 0 -l/JT 0 

FIUY 0 -l/G 0 1/@ 0 0 

Flu= r/G 0 0 0 0 -uJz 

far which we can deduce from (IS) and table 1 that the only non-vanishing components are 

[e:Eg)] &2’@lFF) = -3fl, [+‘I $2 (MFF) = -3 . (24) 

From (22), (19) and (23j, we can check that [e$q]$‘l@lFF) and E$~(SFF) are related by rotation matrices 
[similarly to (19)] : 

In order to be consistent with ref. [ 171, we shall use the same 0, symmetry-adapted nuclear spin operators 
$0 which turn out to be defmed as 

lJiPArg)= c {Al,lk)Ij’)k , I$%) = -2 q (E,alk)Z$‘)” , I,‘f;FIU?=fiF (Fl,olk)l$)” . (2Sj 
k 

If we substitute these expressions in (15) and (21) and if we recall that the matrix K’ulk) is orthogonal, we get: 

w& = -+I&): j(I.&)~ (26) 

_W,T, = $~Jw,(-;)~(~&% [&%)(SFF) XJ(‘*A%)](‘&) , (27) 

which we shall write 

WS’R =&/q%c& (1-Q X [&E&J(SFF) X J(~.A,,)](~,E~](~A,,) . (W 

A key point in the calculation is now to realize that the componetits of [~(a] (z)(MFF) are proportional to the 
matrix elements of cL)G:@’ which transforms a rank-two spherical basis to a cubic basis [24]; so that we can write 

= m $; [@]~)(MFF) [@>2) x &o)];$2) = -3m c ‘2’Gpv [@,2’ X j(1,0)]$,2) 
P 

= -3a [DD(‘,‘) X J(l,O)]~$%) , 

and finally we have 

(29) 
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IV& = qzCd [zC’,E~ x [g12,9 x ~(l.O)](l, =g)]@Ag) _ (30) 

which is the form of operator suitable to easily mlculate the matrix elements according to eq. (4). 
One should note the difference with the formula given In ref. [17] where 

IV& = od [[/‘o,” X ~c~“]“,‘Eg’ X ~“W]‘O.*r& . (31) 

The two expressions are equivalent as can be seen from the fact that the two ope=toiS [Z(*pl) X D(rJ)] (r12) and 
[D:“z’) X J(‘,c)](rp’) have opposite redtied matrix elements in the lJJ> basis: 

= - (JJl~[~‘0,” x ~uJq(13)lJ’J’) _ (32) 

Hence these two operators also have opposite reduced matrix dements in the /JR) basis and the two expressions 
of IV& have identical matrix elements provided one t&3%3 ad = hcd. 

3.3. Tire direct spin-spin hamiltonian 

The interaction hamiltonian between two magnetic dipoles 8’ and pi Is given by (an additional po[47r factor 
should appear in the MKSA system): 

Ill& =p’.pi/lriilil’ - 3(rii.p’)(~~.r’)iiriil” ) (331 

where rii = ri - ri. It is well known [25] that this can be written with rank-two irreducible tensors made up 
from the rank-one tensors pi: 

IVQ = _ 
ss (\‘Qirij13) C (--l)p C$ii(SFF)[ui X ~J]hz’ , (34) 

Ir 

where C$‘i(SFF) is the value of the renormahzed spherical harmonic of Eiacah for the SFF angles Bij and Qij as- 
sociated with the vector rji: 

@ii = I$ .)U’ yf’(Qij, Gii) . !.f (35) 

If now we reiate the magnetic moment to the n&ear spin through 

$ =&Q&i ) (36) 

and if we consider the mo!ecuIe as a rigid rotator in its equilibrium configuration for which lr+l = R for adjacent 
nuclei and R&for opposite nuclei, we can introduce the coupling constants d, and d2: 

dl =g;&hR~ , dz = dl/lfi. (37) 

‘- The direct spin-spin interaction hamihonian lVss is then obtained by su mming IV& over couples of nuclei; in 
order to take advantage of the orthogonality of the matrix G~lij) which we shah use in (42) and (43) below, we 
split ‘Vss into two parts: 

(38) 

where IV& is the hamiltonian which would result if alI nuclei were separated by the distance R: 
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and b& is the complement to F+..: 

W& can be dealt wiib as we did for WsR; fust we transform C(Z)(SFF) to its MFF components: 

These MFF components can be calculated numerically with eq. (35) and the MFF angles IQ and @ii of the equi- 
librium configuration. The matrix (Coi$> which transforms quantities labeled by couples of indices ij to quantities 
labeled by IR of Oh yieIds the foliowing transformation: 

(42) 

(43) 

The matrix elements (CoIrj7 are identical to the coefficients of nuclear spin wavefunctions with two nuclear spins 
opposire to the four others, i.e. with &f1 = 2 1; they are given in table 2. Because (CJJ~ @> is an orthogonal matrix 
we can readily write: 

Here again we can notice that the numerical values of the [Cc 
are proportional to the matrix elements (2)Gf’o 

(0 @) which are derived from (3.9, (42) and table 2 JP 
which transform a spherical basis to a cubic basis (see table 3): 

[CiO]f)(&fFF) = @)G$” . (45) 

If we now express the doubie dot product of (44) in terms of tensor couplings, we obtain 

rv& = -hd13JT& [DC 2%) x p x 11 (%Es>j’“Ara’ _ hd, 3,&-,,7[@‘Fz) x 11 XI] (Vz)](OAg) .(46) 

We shall now deal with IV.&: it can be checked strai&tforwardIy that, with rhe values of C~‘lV(NFF) G&X- 

Table 2 

G7lrn 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56 

1 

--2X./3 
1 
-2J3 

1 

-2fi 
-- 4& -2h .-L 

-2J3 

% 2 --l/4 114 -l/4 l/4 0 0 -112 0 -l/4 0 l/2 If4 0 --l/4 l/4 

E’p 1 

Etg 2 -l/4 l/4 -l/4 l/4 0 0 l/2 0 -l/2 0 -I/2 l/4 0 -l/4 l/4 

F2zg x l/2 0 -I/2 0 0 0 0 0 -l/2 0 0 0 0 l/2 0 

Fzg3’ 0 -112 0 l/2 0 0 0 0 0 a 0 l/2 0 0 -l/2 

Fzgz 0 0 0 0 0 l/2 0 -l/2 0 -l/2 0 0 l/2 0 0 



lated by eq. (39, the vaIues [CtEs)](2)(MFF) given in table 3 and the expressions of [Ii X ZZ]f) (obtained by eq. 
(43) and table 2) we can write the following relation: 

Cc’!‘$MFF) [Zl X Z6];‘) + C$“(MFF) [Z’ X Z4]p) H$~~~@SFF) [Z3 X Zj]:’ 

= ; C(=s#MFF){[Z XZ] -P 
Wg) _ [Z X Z]LQ) ) 
LI 

whence we can deduce, with ‘he same steps as for W& that: 

IV& = -&Z*(dl - d1)(&/2)&[D(‘&J x {[Z XZ]‘W - [ZxZ]fW))J(o~~ts) . 

Finally (46) and (48) can be gathered in the final expression of IVSs: 

iVss = -3Zr [&= g X {(St +da)[Z XZ](‘G + (dr - d2)[ZXz](2,E~)~]~o~hlg) ) 

(47) 

(48) 

-3&kQ [D (a&,) X [Z XI]W,,)]KUQ) , 
(49 

which is in suitable form to calculate the matrix elements. Actually, instead of the operator [Z XZ]pc3 defined 
in (42) one can use the operator S(‘yo defined in eq. (44) of ref. f17]. Both sets of operators can easily be ex- 
pressed in terms of [Zi X IZ](~) Ir , which will yield the relationships between our constants d, and d2 and the con- 
stantsdF,dt,d$ and dF ofref. [17]. In particular we have: 

$‘f2g) = ?&[I x#LI’,~) 
W) 

which leads to 

d,=-;\Ghd,. 

If we consider then the combination 

(51) 

in terms of [Zi X ii]:),“, and try to identify it to 

(dl +d2)[ZXd(2,E,)t(di -d2)[ZXZ]('1Ek), 

we must (i) cancel the coefficients of [P X PI::) 
rI or (35). (iii) identify the coefficients of [Zi X Zl]f 

ii) identify the coefficients of [r’ X ZZjLa) with (v) f (16), (24) 
with (g) = (16), (24) or (35); this respectively leads to the 

three equations: 

3df i &f.ZF + (3/&i; = 0 (coefficient of Z’P) , 



-dF/&+ fad: = -(3/4&h[d, + d, + (dl - d2)] = -(fi/i)hdl (coefficient offlf2), 

-(S/@)df - $ &d; = -(3/4@)ti.[dl +dz - (dl - dZ)] = --2\/3jld? (coefficient of1116) , (52) 

from which we deduce the relationships between the two sets of constants: 

dz = $ mh(; d, - dl) ) df = ; h(da + dl) , d; = -(3/2&) Izdd, : WI 

3.4. Tire spin-vibration interaction 

In our previous work [2,9] on the hypetime structures of three A, VR lines (R 28 A;, P 33 Ai and P 59 A$), 
we have been obliged to introduce the scalar spin-vibration hamilton& which can simply be written as: 

.bJ~~ = hAI. , (54) 

where 1; is the vibrational angular momentum associated with the triply degenerate mode v3 we are concerned 
with, I is the total nuclear spin,l= Z, ,$j, and where both vectors have to be considered in the same frame. As 
pointed out in ref. [36], if R is considkred as a good quantum number, the diagonal matrix elements can be de- . 
rived by the vector model (WI) = WJ) (fif)/dTz)) which leads to: 

(J,R,~“nC~R;Ic~,U3 =lI~S~IJ,R,,,nC~R;IC~,U3 = 1) 

=-[~Ah~4J(Jil)]~r’(Fi1)--J(J+l)-I(I~1)][R(R+l)--J(J~?)-22]. (55) 

In this formula, one can see that the effect of this operator is much larger in P and R branches than in the Q 
branch, where R =.J in the u3 = 1 level. The same matrix elements would be obtained with the formalism developed 
in sections 3.2 and 3.3; if SFF components of Iare used in (54) we can write 

in agreement with the operator given by Michelot [30]. 
The treatment of the interaction between nuclear spins and the magnetic field created by the angular momen- 

tum J can be repeated for the magnetic field created by the vibrational angular momentum 13. Therefore we ob- 
tain similar interaction operators; indeed (56) is analogous to (26) and there exists alsr; a tensor spin-vibration 
interaction [30], analogous to (31) (and derived by Uehara et al. [36] for Td molecules): 

h?;, =X [@a) x [&D x ~~0,1)](l,‘Es)](O,Alg)) ) 69 

where the constant X is unknown up to now. For a given value of J and R in the I+ = 1 state, this operator has 
matrix elements which are proportional to those of FV& so that we can introduce ?V& phenomenologically by 
varying cd in the u3 = 1 level (we proceeded in the same way to determine A). Once we have several Acd for dif- 
ferent vibration-rotation clusters, then we can show that all these effective Acd stem from a unique spin-vibra- 
tion cou 

P 
ling constant X. For the time being we have only varied cd in the excited vibrational state for one cluster, 

P(82) FloFio [section 4 example (C)l, and one line, P(4) F1 [ e-pie (D)] ; these variations did improve the 
theoretical spectra but the vaIues of Acd am still tentative and not really adjusted_ From the analysis of the great 
number of we&resolved structures now availaole we expect to derive in the near future a precise value for the con- 
stant X. Also the breakdown of R as a good quantum number might then be manifest in the hyperfie spectrnm. 



4. Application to the andysk of superfiie/hqpex&ie 
ShMllW 

In this section, we apply <2e results of section 3 to 
derive se-fed synthetic spectrzl structues in the v j 

band and we compare them with observed spectra. 
Two such spectra were discussed in ref. [12] ; we shall 
first @ve more details on these two examples, then we 
shall display a few other cases for which a comparison 
between theory and experiment has been performed. 

The calculation is made according to the simple fol- 
lowing procedure: 

(i) In each vibrational state (i.e. the ground state 
and the u j = 1 state), we consider the vibration-rota- 
tion states which are supposedly close enough to inter- 
act substantially through hypzrfine interactions with 
the states involved in the observed transitions. it will 
naturally often be limited to tie states belonging to 
the same cluster but nothing impedes us from consid- 
ering several adjacent clusters simultaneously or any 
state belon_@ng to the same J manifold if necessary. 

(ii) Each vibration-rotation wavefunction is 
coupled to nuclear spin wavefunctions in order to 
construct the total Pauli-allowed wavefunctions which 
were considered in the previous sections. All these to- 
tal wavefunctions define the basis of rhe two subspaces 
(upper and lower) to which we restrict our calculation. 
A shorthand notation for these total state vectors 
rvill be Iu,JRC&JF) (MF is ignored in ;he followinS); 
the dimension of each subspace is noted d and is the 
sarre for u3 = 0 and for u; = 1 because of the selection 
rulesU?=X’=O(exceptforLJJ=ilandifJ<iin 
one of the subspaces, which occurs only ifJ< 3). 

(iii) The hamiltonian mat&~ is then calculated in 
each of the subspaces and diagonalized. The matrix is 
diagonal iu the quantum number Fand the eigenvector 
will be noted lu3JRFi) and can be expressed as 

In addition to the block diagonal form in F, Ron-zero 
off-diagonal matrix elements appear only if C, X C{,u 
contains the IRS Ale, E, or F2n, and the eigenvectors 
are obtained by dia~onaliziig subblocks of small di- 
mensions (a few units) even if rhe dimension d can 
reach a few tens (actually some juj JRC&IF) are al- 
ready eigenvectors). 

(iv) The spectrum is deduced from the eigenvalues 

and eigenvectors; in saturation spectroscopy, to each 
couple of dipole-allowed transitions which share a 
common level (either upper or lower) corresponds a 
Iine [37]_ If the two transitions of the coupIe are iden- 
tical, only two levels are involved and the line is located 
at the frequency of the transition; if the two transitions 
are different, the line is located half-way between the 
frequencies of the two transitions and is called a cross- 
over resonance. The intensities are calculated accord- 
ing to the standard formulae for hyperfiie compo- 
nents in saturation spectra [37] in which the individ- 
ual reduced transition moments are given by 

X (v3JRC/F!l~IIv’jJ’RCIF’) _ 

The reduced matriv elements in the coupled basis are 
then related, as usual, (see eq. (17) of ref. [37]) to the 
reduced element (u3 JRCIIp l/u: J’RC)whkh can be 
considered as a constant for each mamfold under study. 

(v) The synthetic spectrum is then drawn after con- 
volution of the above spectrum with a lineshape func- 
tion taken as the derivative of a lorentzian whose line- 
width (identical for each line) is adjusted for each ex- 
periment. If the comparison with the observed spec- 
trum is not satisfactory, the constants of the hamil- 
tonian are changed and we go back to (iii) until agree- 
ment is reached; fM4 and cd have been determined in 
this way. 

The above procedure of calculation is referred to 
by Harter [SS] as a conventional synthetic approach 
which yields accurate spectra and constants but does 
not te!l the physical meaning of the eigenvectors. On 
the other hand, he has develope 1 an analytic approach 
which enables one to predict wha: pattern of levels 
should be expected when the vibration-rotation split- 
tings within a cluster are negligible in corimarison with 
hyperfie matrix elements. This approach relics on the 
group theory which is genera&y used for atomic elec- 
tronic orbitals but which can be applied to molecular 
nuclear states in the particular case where the rotation 
axis of the molecule is well stuck to a symmetry axis of 
the molecule: the symmetry axis is then considered as 
oriented in the laboratory frame and the nudear orbit- 
als together with the nuclear spins are used to build a 
basis of Slater states in which an approximate hyper- 
fme hamiltonian matrix is easy to write down. Harter 



[3X] has shown that the eigenvectors of this hamil- 
tanim are closely related to symmetry-adapted func- 
tions in the groups S, X S, for tetragonal clusters or 
S, X S, for trigonal dusters; this leads to a good phys- 
ical understanding of the hyperfme splittings: the spin- 
rotation inter2ction yields substates which are labeled 
with broken tableaus (in S, X S2 or S3 X S,) 2nd the 
spin-spin interaction modifies these splittings through 
2 tunneling effect between equivalent states which have 
the same number of spins up and spins down. Wowever, 
there are some severe drawbacks in using +&is method 
to deduce molecular constants: one introduces a phe- 
nomenological hamiltonian for each case (a D,-invariant 
hamiltonian for four-fold clusters -and a D+nvariant 
for three-fold clusters) with 2 set of effective param- 
eters for each cluster; complications arise 2s the cluster- 
ization becomes weak (frame transformation [43,44] 
is then required); also the exchange of more than two 
spins and diagonal spin-spin matrix elements require 
adding more parameters; altogether to do accurate _ 

calculations, it may not be worth pushing the mod- 
el too far since it starts with an approximate ham& 
to&n anyway; but it is worth remembering the level 
classification in the ideal situation 2nd the correlation 
diagram. We shall try to give the reader the possibility 
to estimate how the results which come out of hamil- 
tonian matrix and which represent the “real thjng” 
can fit in this model. 

To do so we shall give details which will be, for 
example, the main effects of the respective operators: 
successive changes in the pattern of levels can be out- 
lined after the introduction of: 

(i) the vibration-rotation operators TM 2nd Tzz4, 
(ii) the scalar spin-rotation operator, 

(iii) the diagonal part of the tensor spin-rotation 
and spin-spin operators, 

(iv) the off-diagonal part of these operators. 
The strength of the mixing should then be apparent 

2nd help the reader to understand the intensities and 
structures of crossovers. In addition to Q(53) FtF$ 
(example A) 2nd to Q(38) F;E’Fy (example B), we 
&all show crossovers in the following clusters: 
Q(54) A;F;E4, Q(41) F;E5F$ and P(W) F:‘F;’ 
(example C); then we sh2ll show that crossovers also 

appear to be fairly strong even in a low-J m&fold 
such as P(4) (example D). In P(4) also, a recent spec- 
trum with ap. improved resolution shows the structure 
of 2 main line: the F1 line splittings are essential to de- 

termine the sign of the constant cd. Finally R(28) A$ 
shown at the bottom of fig. 1 is another case of re- 
solved hyperfme components 2nd will be our last 
example Q to be discussed. 
IAl Ql-53) F:F$ 

The possible spin wavefunctions are lFzu, I = I), 
IFTz, I = 1) for an F, vibration-rotation state (which 
appears to be F1, and F,, j, 2nd IF,, , I = O), IFlu, 
I = 2) for an F2 one (which appears to be Fzc only). 
The dimensions of the two matrices built in She basis 
Iv;JRCtRIF) are then twelve but each matrix can 
readily be split into subblocks: the only subblocks 
with dimension >l are: one of dimension three 
spanned by lvj, 53,53, F&, 1,53), jug, 53,53, F$, 
0,53) 2nd I+? 53,53, F$, 2,53), one of dimension 
two spanned by I+, 53,.53, Ft,, 1,54) 2nd Iu3, 53, 
53, F6 g, 2,54) and a last one of dimension two 
spanned by I+, 53,53, F$, 1,52) and I+, 53,53, 
F$s, 2,52). The two matrices in u3 = 0 2nd u3 = 1 
spaces have exactly the same structure but a very im- 
portant difference (fig. 3) stems from the fact that the 
F,F, vibration-rotation splitting due to To4 and 
Tzz4-is of the order of 13 MHz for uj = 1 and 180 
kHz for u3 = 0. Such a difference appears in all cases 
and arises because tIz4 S tm4 2nd because TzT4 has 
no non-zero matrix elements in the ground state. The 
influence of off-diagonal matriv elements between F, 
and F, will then be almost negligible in the uj = I 
state &d we shall focus on the ground state. 

The scalar spin-rotation interaction alone gives 
the pattern shown in the second column of fig. 2 
which is dready very close to Harter’s “case two” 
since it spreads over 1100 kHz. The diagonal part of 
all the tensor hyperfme operators brings quantitatively 
small changes (third column) but, qualitatively, the 
splittings between F,, 2nd Flu subcomponents are 
an important fact which must be noticed. At this stage 
and though hyperfine splittings rue dominant, there is 
no point in changing the labeling of states. The result 
of diagonalization of the three subblocks of interacting 
states is shown in the right column: in the 2 X 2 sub- 
blocks, the levels are only slightly pushed apart 2nd 
the two coefficients of each eigenvector are of the 
order of 0.96 2nd 0.28 so that they still can be labeled 
more exactly with the quantum numbers of the orig- 
inal coupled wa;refunctions rather than with the broken 
tableaus which correspond to 2 (d/2, d/2) mixing. 
On the other hand, in the (F = 53) 3 X 3 subspace, the 
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F C I = 55 F2 2 
506.5 506.5 

(.25,-.aa,--38) 

(.76,-.05..63) 

C-.58,-.45,.67) 

52 i2 

-659.5 51 F;! 
2 

-705.5 -705.5 

Fig. 1. Q(53! FZF:. Patterns denerg levels in the u3 = 0 state at succesiwz stages of the calculation; from left to @ht: VR split- 

ting; SC&r spin-rotation Splittk@S: diagonal effects of all hyperfine operators; post-diagonalization pattern. Energies are given in 

Hz; u States are drawn wi:ith dotted lines. For the three (F = 53)~ levels, we display at the right, in parentheses, the three compe 

nenis ofthe eignvectos on the basis (IF22), [F1l), IF20)). 
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Fig_ 3. Q(53)FtFf. Ener,~ level diagram for both levels of 
QW3)F&F; and associated resonances. Only main reso- 
nances and crossovers of interest for the present discussion 
are represented. 

mixing is so pronounced that the Fig or Fzg character 
and the value of the total nuclear spin are lost. The 
components of the eigenvectors (with decreasing eigen- 
values) can be compared to those of the broken tableaus 
which diagonahze the spin-rotation matrix in an exact 
:ane 2 (see table VII(c) of ref. [38]): they are respec- 
i;;‘ely (0.25, -0.58, -0.38) versus (G/6, -&j2, 
-fi/3), (0.76, -0.05,0:63) versus (&/3,O,v%3) 
and (-0.58, -O-45,0.67) versus (d/6,42/2, -d/3) 
and one might be tempted to identify our eigenvectors 
with the broken tableaus If” U), I:t$ t&! and 
1 tCJ tt); however the comparison with fig. 17 of ref. 
[&I * brings the following comments: in our pattern, 
diagonalization causes a state with F = 53 to cross a 
state with F = 52 2nd this does not appear in h’arter’s 
fig. 17; this flaw however is less pronounced in his pat- 
tern of fig. 19 after frame transformation. 

In order to compare the effects of various terms, 
we give (table 4) the 3 X 3(F = 53) matrix in which, 
for each matrix element, we separate the scalar matrix 
elements (vibration-rotation + spin-rotation), the E 
tensor spin-rotation, the F, terror spin-spin and the. 
E tensor spin-spin matrix elements respectively; it 
can be checked that the spin-spin interaction is only 
a small perturbation compared to off-diagonal spin- 
rotation terms. 

’ The values given by Harter forS, 7 and a in his caption to 
iii. 19 axd his table XI(c), do not correspond to his fig. 17; 
one should probably readn = +0.2 instead of -0.2. 

Table 4 

-___ 

SC3kU 
E spin-rotztion 
F2 spin-spin 
E spin-spin 

F=55 

“3 = 0 

Fls. 2 Fzg, 1 F2g9 0 

-106.5 - 

-1.16 -73 - 
-0.05 -0.001 -0.07 

3.2 -0.07 -1.2 

84.5 - 
-0.4 103 
-0.2 

2.3 - 

-90.5 
- 
_ 
_ 

In the 03 = 1 state, each vibration-rotation level 
is split into subcomponents exactly as it is in the third 
column but, because F, and Fz are separated by 13 
MHz, diagonalization has negligible effects. As a con- 
sequence, lines involving lower states which are not 
affected either by diagonalization in fig. 2, will be 
superposed (e.g. the three Flu F = 52,53,54 compo- 
nents); on the contrary, if a state is pushed upward 
(respectively downward) by diagonalization in fig. 2, 
a transition which involves it will be shifted to the red 

(respectively blue), e.g. Fr, F = 53 is pushed upward 
by 60 kHz and the associated line is 60 kHz left of 
the F, line (see line E in figs. 3 and 5). 
(B) Q(3S,F2”E°F; 

The possible spin wavefunctions for an E vibration- 
rotation state are 1 Es, I = 1) and IE,, I = 2) so that the 
dimension of the hamiltonian mat& is twenty in each 
vibraticnal state; the coupled be& vectors are: 

Iv3,38,38,F;&= l,F= 37,38and39), 

Iu3, 38,38,F$= l,F=37,38 and391, 

Iu3, 38,38, Ez, I = 1, F= 37,38 and 39)) 

Iv3, 38,38, EE,Z = 2, F = 36,37,38,39 and 40) , 

Iu3, 38,38, F&I=O,F=38), 

Iv3, 38,38, Fg,I = 2,F = 36,37,38,39 and 40). 
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Fig 4. QQ3,F;F:. Nomoqrn 1431 for the crossover Lines. 
E&I of the ten c~ossoser lines can be identified and the 
crossover st_ncture can te reiated to the patterns of levels 
in the upper and iowzr states: the quadzuplet is made of 
two 40 kHz doubleu separated by 200 kHz. Two crossover 
lines have negligible intensities d-kit S explained by the 
value 0.05 for the FI component of the I-‘22 eigenvector 
(see fii. 2). 

Since E, X F,, = Fir + F2,, the tensor spin-rot&ion 
inter&on can only couple FyG with F$ while, since 
F+ X Fls = Azr + E, + Fir + El,, the tensor s in- 

B . spm interaction can couple EE with FyU and Fr, wrth 
Fsz; if we compare with example (A), we have merely 
adaed E, states which can interact with Flu states 
through the F,, tensor spin-spin operator only. The 
coupled states&h F= 36 or 40 are then already eigen- 

A 

500 kHz 

-2% MHz 

F 

Fig 5. Q(S3)FgFf. Cakuhted (top) aad observed (bottom) 
satwadon spectra. This spectrum has been obtained v&b a 
frtx-running laser and the corresponding linewidth is 20 
kHz (hwhm). hleasured detunings am from Q(?S)F:. 

vectors; states with F = 37 sp2n two b!ocks: one of di- 
mension three with E, and Flu states, the other of di- 
mension two with F,, and Fa,, states (and similarly 
for F = 39); in the F= 38 subspace, we have two blocks 
of dimension three: one with u states, the other with g 
states. As in (A), we diqlay the u3 = 0 pattern of states 

at each stage of the calculation and one can see that it 

Table 5 

C.1 

Flu, 1 JL 2 L,l 

SCalar 204 - 

E spin-rotation -0.04 _ - 
F2 spin-spin 4.5 9.8 3.2 
E spin-spin 0.0005 - 

F= 39 190 - 

-0.05 +0.2 
- 

-0.003 -0.01 

IJa = 0 200 
-0.05 

- 
to.007 
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Fig 6. Q(38)F8E°Fy. Patterns of energy levels in the g = 0 state at successive shges of the calculations; from left to right: VR 
splitting; scala spin-rotation splittings, diagonal effects of all byperfine operators; post-diagonalization pattern. Energies are given 
in kHz; u states are drawn with dotted lines. For F = 38, the energies &er diagonalization are on the r@ht and, on the levels, are 
displayed the compoaents of the eigenvectors in the basis (IF22), / Fi I), IF20)) for g levels and in the besis (IF, 1). IED, tE2)) 
fOi u levels. 



is even much closer to a case 2 than example (-4); how- 
ever, due to the numerical values of the isoscalar coeffi- 
cients K (see the append@ the E,-tensor interactions 
have much smaller matrix elements and the major r&u- 
ing stems only from the F,, spin-spin operator whose 
constant is smailer than cd~finally the values of the Off- 
diagonal matrix elements are still of rhe order of the 
difference between diagonal elements (see the F = 39 
matrix in table 5); as a conse+ence, the r&&g of basis 
functions is substantial thou& the values of the energies 
are not changed drastically after diagonalization. 

The coeffkients of rhe eigenvectors are displayed at 
the right of fig. 6 and explain the very remarkable cross- 
overs, between E and F, lines, shown in fig. 7. The 
structure and intensities of these crossovers reflect the 
the fact that, in F = 39 or 37 subspaces, the mixing is 
~:herbetweenIE,,I=2)and/F1,,I=l)whilein 
the F= 38 subspace,it is rather between IF,,,i= 1) 
and I%, I = 1). One can also note the particuIar mix- 
ing in the (F = 38)g matrix where, after diagonabzation, 
F1, stays almost pure while only IF,,, I = 0) and 
iFZell= 2) are really mixed (a comp&abIe mixing be- 
tween these two states occurs in the I+ = 1 level since 
they are directly coupled by the F,,-tensor spin-spin 
operator); fortunately F,, and F2$e substantially 
mixed in the F = 39 and p = 37 subspaces so that cross- 
overs do occur, as in example (A); however these cross- 
overs are blended with the hyperfme components of 
the EE vibration--rotation fine. 

‘--..I_- __.. -..C,_.____ 
._ ---/-_~...“_, ‘% 

, 

-507 0 507 kHz 

Fig ?. C&&led (top) and obsencd (bottom) spectra for 
:he Q(38)fl~E°F~ trigon.xI cluster. This spectrum has been 
obtied :vith a frequency offset-locked iascr [ 2] and the 
Lincwidth is 5 kHt (‘nwhm). 

(C)More crossow7s and superfine srmcbi-es 
!n examples (A) and (B), we gave details about two 

of the crossover structures used in ref. 1121 to deter- 
n&e tW and cd; the other structures we used were 
in two other FtF$ clusters, of Q(Si) (which can be 
seen in fig. 11) and of Q(S5), respectively, which are 
very similar to caSe A, and another tetragonal cluster, 

7 QW) A&E +, which we display in fig. 8. This cluster 
is sirnpie since F,VR states are g only and do not inter- 
act with A2 and% which are u only. The crossovers 
arise because A2 and E are coupled through the E-ten- 
sor spin-rotation interaction only and are thus very 
sensitive to the value of cd. In fg. 8, one can See an- 
other cluster Q(41) FTE’F! analogous to the Q(38) 
one of example (B), in which a crossover appears, sim- 
ilarly, between the Es and FP lines. However, the 
structure of this crossover which is a doublet with 40 
kHz splitting is not resolved in the figure. 

With the P(82) Fi°Fio duster shown in fig_ 9 we 
have new interesting features: first the crossover does 
appear to be a quadruplet, second the main lines F, 
and F-, exhibit many bumps which were not seen in 
the pr&ious examples. The theoretical spectrum drawn 
with the known constants did not reproduce we!l these 
bumps of the main lines and we introduced phenome- 
nologically the tensor spin-vibration operator as a 
correction to the tensor spin-rotation interaction in 
the u3 = I state; Since these two interactions give the 
same hyFerfrne structure this is indeed equivalent to 
varying cd in the upper State. The Synthetic spectrum 

Fig 8. Portion of the SF6 saturation spectrum obtained with 
the P(16) line of ?hrCO? waveguide laser I;] illustrating two 
different cluster pa Stems: the tetragonal Q(54) A:F:E” cluster 
with a 2 to 1 superfine splittings ratio and the trigonal 
Q(41) F~EsI$ duster with almost equal splittings. CKKSOW~~ 
are marked \kii:h an X and occur half-way between co,nponents 
ofidentieal parity: the crossover between Q(54)AZ, and E, is 
clearly -xxolved as a doublet whereas the structure of the cross- 
over between Q(4I)FT and ES is unresolved. Frequency de- 
tunings are in MHz from theQ(38)E’ line at 28.412 582469 
Tliz [ii). 
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178.~0 MHz 

99.01 

Fig. 9. SF, saturation spectrum ranginjn_g over 250 MHz on either side of the P(22) CO* Iaser line. Frequency detuningy are in MHz 
from the reference line at 28.251 957 355 THz [ 111. Two diffemnt cluster patterns me illustrated: the P(S2)F~°F~o four-fold 
axis cluster and the P(84)A$F$F:Aj tie-f&d axis cluster with three equal splittings. 

io 
P(82) Z 

‘1 

0 23% KHZ 

Fig 10. Synthetic spectrum of P(82)FiGFiG cluster drawn xvi’& cd(ua = 1) = 1.05 cd (up = 0). hwlun = 23.5 kIiz. 



showninfig.10isdrawn~~thcd(U3 =0)=4.25kHz 
2nd AC, = c&u3 = 1) - cd(u3 = 0) = 0.05 Ic&3 = O)l. 
The compvison between theoretical 2nd observed spec- 
tra is very satisfactory but is only qualitative: the cali- 
bration of ‘ti early recording did not really enable us 
to measure precise splittings in the spectrum. We must 
atso point out that we could not determine the sign of 
c, from this cluster 2nd a very similar synthetic spec- 
trum GXI be drawn with ce(u3 = 0) = --4.25 kHz 2nd 
the same dcd_ The sign of cd will be determined in the 
following example. FinaUy one can notice that the in- 
tensities of Fit 2nd Fi” Iines are not equal, as one 
would predict from the nuclear statistical weights; this 
is understandable because lines involving levels which 
are perturbed by the mixings lose much of their inten- 
sities which go as the fourth power of the coefficients 
of the eigenvectors. Furthermore the presence of cross- 
overs modifies the observed intensities. A typical exam- 
ple of this henomenon 

P 
is shown in fig. 9: the P(84) 

AiFiF?A1 cluster is very tight (830 IcHz wide) and, 

because of the important hyperfine mixings, the nuclear 
statistic intensity ratio of 10 to 6 between A2 2nd F 
lines is not observed. The observed intensity ratio is 
well reproduced theoretically; this shows that in such 
a caSe a superfine fit alone cannot be worked out satis- 
factorily, though only superfme splittings are ob- 
served, 2nd that one needs the hyperfme operators to 
give a correct account of the intensities. 
(Dj p(d) 

The P(4) m2nifold is made of the four lines 
AlFIEF which do not form a cluster 2nd spread 
over 60 hII!fz; only the lines A, F, E could be reached 
with our waveguide laser 2nd can be seen in fig. Il. 
Crossovers are observed between A1 2nd F,, between 
A, 2nd E 2nd between F1 2nd E. They arise because 
the coupled b2sis functions are indeed strongly mixed 
in the ground state: to give an idea, the eigenvectors 
of the (F = 4)g subblock have components of the order 
of0.75,0.60,0_10 2nd 0.25 in the basis IO, 4,4, A12, 
0,4), IO, 494, F,,, 2,4), IO, 434, F2s, 034) 2nd 

Xl ., 

---j-G- 
224.04 

.Y)‘l” QC 
cc-z.w 

228.16 $36.62 

235.50 

FC 11. Part of the P(4) manifold. Top: supersonic beam spectrum with bolometric detection [40]. Middle: saturation spectmm 
obtained Lbivirh a free-running waxguide laserin a room-temperazure cell (detcnings are in MHz from Q(38)E’). Bottom: The 
P(4)Ft component recorded with a frequency offset-locked waveguide laser is compared with a calculated spectrum (ii the middle 
spectrum this line is blended with an unidentified Fl line). Crossover resonances are labeled by Xs: X1 and X2 are crossovers bs- 
lon.$ng to the Q(SI)FqFf system;Xj, X4 and Xg are tbe Pq crossovers respectively in the center of the (XtF1)(AIE) and (FlE) 
intexds. 
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IO, 4,4, F,,, 1,4)_ In the u3 = 0 hamiltonian matrix, 
of dimensioh 22, only the four states with F = J C 2 
are not mixed; in the u3 = 1 matrix, eigenvectors with 
the same C, and different I are also substantially 
mixed: e.g. the two functions 11,3,4, E, 2,2) and 
I1,3,4, E, 1,2) are mixed with coefficients equal to 
0.88 and 0.47. In this IowJ example, the effects of 
spin-spin and spin-rotation operators are comparable 
in magnitude and diagonal matrix elements of tensor 
hyperfime interactions are comparable to off-diagonal 
ones. The effect of diagonal matrix elements of the 
tensor spin-rotation operator has been seen for the 
fust time when we tried to reproduce the hyperfme 
structure of the P(4)F, iine (fig. 11); these matrix 
elements are non-zero because the product of repre- 
sentations F1 X F1 contains E; this fact enables us to 
choose the sign of cd: the synthetic spectrum in fig. 11 
is drawn with cd = +4.25 kHz and Q(V, = 1) = 1.05 cd. 
Again this Acd certainly stems from the tensor spin- 
vibration interaction.but we wait for the analysis of 
more structures to derive a tensor spin-vibration COU- 
phng constant from our effective Acd_ Indeed what 
happens, hidden in the three lines of fig. 11, is more 
complicated than just three hyperfme components 
with F = J, J + 1: first F,, and F,, components are 
well split, second, owing to the mixings, some cross- 
overs and forbidden lines are strong so that the spec- 
trum is made up of 16 non-negligible lines (whose fre- 
quencies and intensities are sensitive to almost all con- 
stants) and one should not be abused by the sinrplicity 
of three observed lines. In the fmal example to come, 
the splitting of a vibration-rotation line into hyper- 
fme components reflects much more closely the de- 
composition of J into F. 
(El R /-WA: 0%. Il 

This line belongs to the trigonal duster -AtF$F:Ay, 
but, in this J-manifold the clusterization mo;es;apid- 
ly to tetragonal clusters: the lines next to our cluster 
are Fz i El [4] (which is neither a trigonal nor a 
tetragonal cluster) and are not that far; so, we have 
added the El states to our basis and, as in P(4), we 
do not work within a Harter’s cluster_ Finally, the 
only states that can strongly interact are El, At and 
F:; this leads to two 21 X 21 matrices. In the synthetic 
spectrum of this same line reported in ref. [2] (as well 
as for the two other A2 lines in p(33) and P(59) mani- 
folds [2,9]) no matrix had been diagonalined since 
only scalar hypefime operators had been used, how- 

ever, with the unproved resolution of fig. 1, off- 
diagonal terms are needed to fit the spectrum; the 
only lines which are not affected by diagonalization 
are the extreme left and right hues since only A, vibra- 
tion-rotation states can be associated with I = 3 and 
exhibit subcomponents with F = J ? 3; all the other 
hyperfiie components are shifted by a different 
amount for each component. Evidence of that fact 
appears in the spectrum of fig. 1: without tensor hyper- 
fme interactions the three splittings of [(AZ, I = 1, F), 
(A*, I = 3, F)] doublets are identicai (and equal to 0.8 
kHz); the additional splittings due to tensor interac- 
tions are 0.8 kHz for F = 27 and 29 but only 0.3 kHz 
for F = 28_ The details of the contribution to these 
additional splittings show that the role played by the 
El vibration-rotation state which does not belong to 
the cluster is as important as the role played by the F: 
state which does belong to the cluster, 

5. Conclusion 

As a conclusion, let us point out that, if the various 
patterns of superfime clusters displayed in this paper 
co&m and illustrate the tunneling structures associ- 
ated with internal tumbling motions, we have also 
shown the impossibility to consider separately super- 
fme and hyperfine structures in an actual molecule. 
We have limited this demonstration to cases where 
only the ground level has hyperfine splittings com- 
parable to or larger than the superfme structure but 
our approach applies equally well to cases where a diag- 
onahzation is required in both states (e.g. R(29)Fi-F$ 
in fig. 1). Among the numerous spectra recorded recent- 
ly at very high reso!ution (&Hz) with waveguide CO, 
lasers and which have not yet been arrAysed, there is a 
large number of lines for which both levels correspond 
to the limit case 2 of Harter and Patterson and which 
exhibit socalled “superhyperfme” structures [38]. 

The present paper is to be considered as a prelimi- 
nary account of a larger piece of work that should 
keep us busy for the next few years: a systematic, de- 
tailed analysis of ah the spectra now available in order 
to provide a complete understanding of the internal 
dynamics of nuclear spins interacting together or with 
the moIecular field within a rotating and vibrating mol- 
ecule. The large number of spectral structures which 
have to 3e reproduced with a rather limited number of 



hyperfine .and fine structure constants is a stringent 
test of internal consistency. The introduction of new 
terms in the hype&me hamiltonian might be required 
but in any case the only rigorous way to achier this 
program is to perform the diagonalization of loge 
enou& hamiltonian matrices with 3 unique set of mo- 
lecular consrants as described in this paper. 

Note added in proof 

AlIo\r;Jlg for a much wider range of possible values 
for Acd we have recently obtained a substantially im- 
proved fit for the P(4) F1 line with a negative cd = 
-4.25 kHz and a Acd = 3 kHz. Such a large Acd is 
consistent with the AC, used for P(B) and the relation- 
ship between a unique coritant X and the parameters 
Acd. Calculated and observed intensities are now in 
good agreement, which is not the case in fig. 11. A new 
figure will be published in a future addendum to this 
paper. 
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Appendix: Relevant numerical values 

A-1. Eamiltonian constants 

tod4 = 5.7 Hz [12], CZj$ = 1125.5s kHz [2], 

c, = -5.25 kHz [41], cd = 4.25 kHz . 

To be consistent with the definition of cd given in eq. 
(13), one must take halfthe value given in ref. [12]. 
The sign of cd is determined from the recent observa- 
tion of the P(4)FI line shown in fig. i 1. 

d, = 9.82 kHz [41], dZ = 3.4? kHz [4I], 

A = 4-4 kHz 12 J. 

A.2 Off-diagonal isoscdar coefficients /42] 

These coefficients satisfy the relationship: 

K(53, 6F1, E, 6F,) = -0.05 , 
K(53, 6F1, E, 6F2)= 0.08 , 
K(53, 6FZ, E, 6Fz) = -0.05 , 

K(53,6F,, F2, 6F,) = -0.003, 
K(53,6F, _ Fz_ 6F,) = -0.001 _ 
K(53, 6F2, F2, 6F2) = -O_OOOX , 

K(38, OFZ, E, OF1) = -0.000064 , 
K(38,OF, ,E,OF,)=0.000069, 
K(38, OF,, E, OF,) = -0.000069 , 
K(38, OE, E, OE} = 0.00023 , 

K(38, OFI, FZ, OF,) = -0.08 , 
K(38, OE, F?, OF,) = -0.1 , 
x(38, OF,, F,, OF,) = 0.08 , 
K(38, OF,, F2, OF,) = -0.13 , 

K(54, 2A2, E, 4E) = 0.054, 
K(53,4E, E, 4E) = 0.054 , 

K(4, E, E, E) = -0.14, 
K(4, F, i E, F,) = -0.41 , 
K(4, FZ, E, F2) = 0.12 , 
K(4, A,, E, E) = 0.28 , 
K(4, F,, E, F2) = 0.14, 

K(4, F,, F2, F1) = -0.13 , 
K(44, F,, F,, F2) = 0.23 , 
K(4, A,, F,, b> = 0.17 , 
K(4, E, F?, F,) = 0.14, 
K(4, E, F2, F2) = 0.32 , 
k'(4, F,, F2,b)=0.33, 

K(28, lE, E, 0A2) = 0.04, 
K(28, IE, E, IE) = 0.06, 
K(28,l F, , E, 1 FI) = -0.010 , 



K(28, OAs, FZ, IF,) = 0.10 , 
K(28, IE, F7, lF1) = -0.018 , 
K(28, lF;, F7, lF,) = -0.16. 
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