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An analysis has been made of the vibration-rotation structure of the Y, band of “SF, from 
measurements, by saturated absorption spectroscopy, of the frequencies for 136 transitions in 
close coincidence with CO2 and NZO laser lines in the 28-THz region. After deconvolution of the 
fine structure lines from their hyperlme structures, the centers of vibration-rotation transitions 
are given with a 5-kHz uncertainty. They are analyzed using the tensor Hamiltonian of Moret- 
Bailly, developed to the fifth order of approximation. An iterative procedure, using full diago- 
nalization of the Hamiltonian matrices, leads to a very accurate determination of 18 effective 
molecular constants of the (uj = 1) excited state, together with 6 constants of the ground state 
(both for scalar and tensor terms). For instance, the inertial constant of the ground state is 
PO = Ba = 0.0910842001( 10) cm-‘, the vibrational energy is 01 = Y) = 948.10252337(40) cm-i, 
and the Coriolis coupling coefficient is {3 = 0.69344341(20). The recorded transitions, ranging 
from P(84) to R(94). are reproduced with a standard deviation ad = 28 kHz Y 0.93 X 10m6 cm-‘. 
A few transitions remain out of the fit, and the possibility of resonances with close vibrational 
levels is briefly discussed. We also give the predicted positions for SF, transitions in close coincidence 
with laser lines of various isotopic species of CO*. 0 1987 Academic FWS, IX. 

I. INTRODUCTION 

The advent of laser absolute frequency measurements has drastically changed the 
character of infrared molecular spectroscopy, first, through a qualitative shift from 
wavelength to frequency measurements, second, through a quantitative jump in ac- 
curacy across orders of magnitude; as a consequence, line frequency measurements 
are now performed in kilohertz instead of thousandths of cm-’ ( low3 cm-’ E 30 MHz). 

In a first step, sub-Doppler spectroscopic techniques have revealed many superfine, 
hyperfme, and superhypetike features of tight clusters or of individual vibration- 
rotation lines. But another important question, which comes to mind next, is to find 
out whether such techniques can also bring a better global understanding of a full 
vibration-rotation band. 
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Among all possible varieties of molecular spectra, one of the most extensively studied 
and well-known types of band is the u3 band of spherical tops (with the possible ex- 
ception of the CO2 laser bands themselves). One reason is of course the present interest 
stimulated by laser isotope separation, but even long before this motivation was put 
forward, the high symmetry of these molecules had attracted the attention of many 
group theorists. 

Furthermore, since the advent of lasers, a remarkable series of coincidences between 
laser emission lines and absorption bands has favored the v3 bands of spherical tops: 
this has been the case for methane at 3.39 pm. Also a remarkable match of frequencies 
has been found between CO2 laser lines and the v3 bands of SF,, Os04, and SiF4, to 
quote only a few. 

At this point, the v3 band of SF6 appears as a naturally good candidate for trying 
to answer the question raised above in the case of nonlinear polyatomic molecules, 
and the present paper is a first successful attempt to fit such a vibration-rotation band 
at the 30-kHz (- 10e6 cm-‘) level. 

In Section II, we present an historical survey of our frequency measurements, and 
show that a final common accuracy of 5 kHz may be retained (except when the NzO 
laser is involved). Then a brief discussion of hyperfme interactions in spherical tops 
is given, in order to show how the centers of vibration-rotation lines can be derived 
from the various superfine, hyperfme, or superhyperfine structures. A complete cal- 
culation of line intensities is also presented. 

In Section III, we develop the theoretical background for the present analysis, using 
the spherical tensor Hamiltonian introduced by J. More&Bailly in 196 1. It may be 
surprising for the reader to find here again the description of this formalism, more 
than 20 years after its first publication. The reason is that, although this theory is now 
widely used by the specialists of spherical tops, it has not always been correctly or 
completely used. So, this section should be considered as a guide, where we give 
explicit formulae for the Hamiltonian matrix elements (in a triply degenerate vibra- 
tional state), and a short description of the analysis procedure, especially from the 
numerical point of view. 

Finally, the analysis of u3 of SF6 is presented in Section IV. Effective molecular 
constants for the ground and for the (03 = 1) states are tabulated. Computed and 
measured frequencies are compared for the 136 transitions which are involved in the 
analysis. A brief discussion suggests an explanation for the discrepancies which are 
observed for a few lines. A list of predicted close coincidences between lines of SF6 
and lines of other isotopic species of CO2 is also published. 

II. HISTORICAL DEVELOPMENT, PRESENTATION, AND 
ACCURACY OF THE MEASUREMENTS 

The set of vibration-rotation frequencies used in this work has been obtained from 
spectroscopic structures recorded at different periods during the years 1976-1984, 
with the saturation spectrometer of Villetaneuse at various stages of its development. 
One will find a full presentation of this spectrometer and of its laser sources in Ref. 
(I). The CO2 and NZO laser lines which have been used in this series of measurements 
on the SF6 molecule are shown on Fig. 1, together with a contour of the v3-band region 
of SF6. The hyperhne structure of most of the recorded lines is now well resolved, 
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FIG. 1. The envelope of the vj band of SF6, recorded on a Girard grid spectrometer by Brunet and Perez 
(2), is shown on the left part, while the right part of the figure displays the grid of CO* and N20 (RIO) laser 
lines which have been used in the present work to sample the band, together with a few of the frequency 
markers (I 7) used for the absolute frequency calibration of our saturation spectra. 

with the exception of the lines recorded with the N20 laser which were never studied 
again at the highest possible resolution. 

The detailed study of this hyperfine structure was the primary motivation for the 
continued interest in pushing resolution and accuracy, but it appeared that the number 
of vibration-rotation lines which happened to be known after these years was large 
enough to become a significant test of the vibration-rotation Hamiltonian itself. These 
various vibration-rotation line frequencies have been determined with very different 
accuracies, depending on experimental techniques available at each period of time 
along these years of building the spectrometer, and, as we shall see, the set of data has 
therefore a great deal of inhomogeneity when used toward this new goal of determining 
vibration-rotation constants. Nevertheless, the overall experimental accuracy is, in 
the end, comparable or even slightly better than the standard deviation of the theoretical 
fit, which can be considered, perhaps, as the most comfortable situation (for a while!). 
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A presentation of all the presently available data, and associated accuracy, is given is 
Subsection 1I.A. 

The combined superline and hyperfme levels of structures (which eventually and 
ultimately collapse into superhyperline structures (3, 4)) result in complicated patterns, 
all of which will be presented in a future atlas, together with the corresponding cal- 
culated spectra. In the present paper, we limit ourselves to the fine structure problem. 
This, somehow arbitrary, separation requires a deconvolution of every vibration- 
rotation line from its hyperfine structure, which provides a determination of the vi- 
bration-rotation transition frequencies in the limit of all hyperline constants turned 
to zero. This deconvolution procedure is presented in Subsection 1I.B. 

II.A. Chronological Evolution of Line Frequency Measurements in Saturated 
Absorption Spectroscopy around 10 pm 

Around 1977, i.e., before the era of frequency-controlled waveguide lasers, three 
kinds of data were available: 

(1) a small number of frequency-calibrated and well-resolved hyperfme or su- 
perline structures, corresponding to the few lines that could be reached with conven- 
tional low-pressure CO* lasers, e.g., P(33) AZ(l), R(28) AZ(O), or P(59) A*(3) (5), or 
the Q(38) I;z(O)-E(O)-F,(O) superfine triplet (6, 7) all recorded with a 5-kHz HWHM 
(half-width at half-maximum); 

(2) a much larger set of beat frequencies between two lasers locked to individual 
fine structure lines that could be reached with high-pressure waveguide CO* lasers, 
but without any detailed knowledge of the structures within these lines (linewidth of 
the order of 20 to 40 kHz); 

(3) finally, a few oscilloscope pictures of expected tight superfine doublets (e.g., 
R(29) F1(2)-F2( 1) or P(58) F*(9)-F1(8)) exhibited more complicated structures which 
were barely resolved and not understood at that time, and from which only approximate 
line centers could be evaluated. 

Spectroscopic landscapes, corresponding to each CO* laser line and where all these 
SF6 lines are displayed, were also recorded at the same period by a simple frequency 
sweep of the free-running waveguide laser for P( 12) (1, 8) P( 14) (I, 8, 9) P( 16) 
(I, IO-12), P(18) (7), and P(20) (1). 

From this first set of measurements, 94 absolute frequencies of vibration-rotation 
lines, which had been assigned from previous diode laser spectra (43, 4_5), were known 
with respect to CO* lines in 1977 (using saturated fluorescence in CO* (Z&15)), and 
could be used for a first fit of the band, with only 12 spectroscopic parameters, and a 
standard deviation of the order of 300 kHz (7). 

In 1979 the spectra corresponding to P(22) of CO2 (I I) and R( 10) of the N20 lasers 
(I, 16) were investigated, to reach, respectively, high-/ lines of the P branch of SF6 
and the P(3) manifold. 

The next major step has been the elaboration of a new grid of absolute frequency 
markers in the beginning of 1980, which was based upon the very narrow 0~0~ res- 
onances (17, I@, in order to replace the CO2 and N20 grid which was inaccurate at 
that time; thanks to these measurements, a 20-kHz correction was brought to the CO2 
reference lines of Ref. (14). A precise connection between these new 0~0~ markers 
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and SF6 lines was also worked out at the same time, and provided one or several 
accurately known reference SF6 lines, for each of the previously quoted SF, waveguide 
spectra (17) (however, these SF6 lines have hyperfine structures and, depending on 
the symmetry of these structures, the line centers of the unresolved lines may have a 
few kilohertz absolute frequency uncertainty). 

A second overall survey of the u3 band of SF6, using the frequency offset-locking 
technique with a phase-locked waveguide laser, was performed in January 1982. In 
this technique, a low-pressure laser is used as a reference laser and is locked to the 
third derivative of a saturated absorption peak in auxiliary absorption cells. The goal 
is to obtain, for this first laser, the best long-term frequency stability in addition to a 
good spectral purity (- 10 Hz). Then, the broadband (600 MHz) waveguide laser is 
frequency controlled by phase locking the beat note of these two lasers to the tunable 
frequency produced by a generator. With this method, the hyperfine structure of 104 
vibration-rotation lines was resolved with the P( 12) to P(22) lines of CO:!. The accuracy 
of frequency measurements was, this time, limited by the setting of the offset and by 
the symmetry of the reference lines, and also by nonlinearities of the frequency sweep 
across the structures, which was then achieved by a purely analogic method: the fre- 
quency generator of the phase-lock loop was swept by a low-frequency voltage ramp 
and the frequency deviations introduced in the frequency axis by this system could 
reach values of the order of 1 kHz over a given hyperfine structure. This problem was 
later solved by the use of a programmable R.F. synthesizer. Also, in 1983, the spec- 
trometer was fully computerized, which means that not only the frequency control 
(synthesizer, frequency counters) but also the data averaging were driven by a computer 
(HP 9826 model), thus replacing the analogic recording of spectra on an X-Y plotter 
with a digital recording on disks, with a very accurate correspondence between channels 
and frequency detuning (the linearity of the frequency axis depending only upon the 
synthesizer stability, of the order of a few Hertz). 

In 1984,2 1 new hyperfine structures were added to the 104 previously recorded in 
1982. The absolute frequency accuracy of these 1984 data was then only limited by 
that of the reference frequency. The reference laser frequency may first suffer from a 
lack of permanent control of the setting of the true center of the reference line. Drifts 
may occur owing to time-dependent electronic offsets (induced, for example, by room- 
temperature changes along the day) and also owing to a time-dependent signal baseline 
(induced, for example, by slow pressure changes in the absorption cell). With a lOO- 
to 200-kHz peak-to-peak linewidth, small offsets or a slightly asymmetric shape of the 
error signal can easily result in a few kilohertz shift. Any slight misadjustment of the 
laser beam geometry for the reference laser may be the source of such an asymmetry. 
Also, for a number of measurements, a poor choice of reference line (any line with 
internal structure such as the SF6 lines discussed above) has introduced an uncertainty 
on absolute frequencies of the same magnitude, i.e., of the order of 5 kHz. 

Presently this reference problem is taken care of by sequential scanning of the 
measured line and of a reference line, using the same cell and the same measurement 
laser, and hence with the same laser beam geometry. In this way the reference laser 
frequency is eliminated, except for possible slow drifts during the measurement time 
(less than 10 Hz/min) which are tracked and corrected for by the computer. Finally, 
the reference line should be chosen, whenever possible, among the markers free of 
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structure. In this respect, the most recent progress achieved during 1984-1985 in the 
calibration of saturation spectra around 10 pm was the high precision link established 
between the CO2 and 0~0~ grids of frequency markers (4, 19). This connection was 
made possible thanks to the direct observation of supernarrow (2 kHz HWHM) sat- 
urated absorption resonances in low-pressure COZ (about 5 X lO-5 Torr) over both a 
long path length (108 m) and a long integration time (20 min), and is also a consequence 
of the long-term computer control of the laser frequency, including frequency drifts 
of the reference laser. The link was established with the P( 12) and P( 14) lines, of 
direct importance in the SF, v3-band region, and also for the R( 10) line of CO1 which 
has been measured with respect to an 0~0~ line whose absolute frequency is known 
with a 50-Hz accuracy (20). The immediate result is a high degree of confidence in 
the absolute frequency of our 0~0~ and COZ markers, at the kilohertz level. The long- 
term result is the clear possibility to calibrate saturation spectra at the subkilohertz 
level of accuracy, if one is willing to spend enough time on each line to be measured. 

Indeed, the main remaining source of error will still be the lineshape symmetry (of 
narrow lines only), which has to be carefully checked by systematic studies of the 
dependence with the laser beam geometry, laser power, gas pressure, and modulation 
parameters (frequency and modulation index). 

Since the measurements used in the present paper correspond to so many different 
steps in the quality of the spectrometer and to unequal choices of reference lines, we 
have to discuss case by case the final estimated uncertainty. 

For the P( 12) CO2 laser line, most measurements, both in 1982 and 1984, have 
used the low-frequency component A,(3), of the P(39) superline doublet of “*Os04 
to lock the reference laser frequency. A comparison of 10 measurements which were 
performed both in 1982 and 1984 shows that the absolute frequency of measured lines 
may vary by as much as k3.1 kHz, owing quite likely to a different adjustment of the 
reference laser. To include these extreme cases we will adopt a conservative error 
margin of k5 kHz. The R(83) and R(94) clusters were measured only in 1982 with 
R(66) of SF6 as the reference; given the slightly asymmetric hyperfine structure of this 
line, an error limit of *5 kHz appears also as a reasonable estimate in these two cases. 

For the P( 14) COZ laser line, six lines were accurately measured both in 1982 and 
1984. The four lines for which the good 0~0~ reference line at 28 464 676 938.5 kHz 
was used are within 2 kHz in each case (R(28) F*(l), F,(l), E(l), and E;;(2)). In the 
case of the complicated R(29) F1(2)-F2( 1) super-line doublet (which is illustrated by 
Fig. 2) a different reference line was used in 1984 (the R(28) A*(O) line of SF,) and 
the corresponding frequencies are found, respectively, 1.4 and 4.0 kHz lower than in 
1982. These discrepancies illustrate again uncontrolled shifts and drifts of the reference 
laser frequency which were not set for all measurements with the same accuracy. An 
error bar of +5 kHz should again apply to all cases. 

In the case of the N20 R( 10) laser line, two lines, Q(40) A,( 1) and QJ37) F,(7), 
belong to the reference grid established in 1980, and are known to +6 kHz. Other line 
frequencies can be obtained through the beat measurements of 1979 with the reference 
laser locked to Q(37) F,(7), and their absolute frequencies have an overall uncertainty 
better than +lO kHz, except for the P(3) A*(O) and &(O) lines which have a wider 
unresolved hypertine structure and, thus, cannot be defined to better than +20 kHz. 
Finally, the P(3) Fi(0) frequency was never measured by beating two locked lasers 
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together, but only by a fast reading of the line center frequency, and therefore cannot 
be claimed to be known to better than +50 kHz. The Q line frequencies had also been 
estimated in 1979, with a +15-kHz accuracy, by a direct comparison with the N20 
line center (at 17.725 f 0.010 MHz from Q(37) F,(7)), to which the reference laser 
had been locked using the saturated fluorescence technique. 

For P( 16) of CO*, the reference for 1982 and 1984 measurements has been the 
narrow and isolated SF6 Q(43) F,(8) line whose absolute frequency measured against 
0~0~ has been found to be 28 412 599 128.7 f 2.0 kHz (at -23 982 f 1 kHz from 
the 0~0~ line and $16 660 + 2 kHz from Q(38) E(0) of SF6). Twenty-one measure- 
ments common to 1982 and 1984, among the total number of 39, show an internal 
consistency of +2 kHz. 

On the P( 18) COZ line, the reference laser was locked to P(33) A*( 1) of SF6 for the 
1982 set of measurements, whereas a PFS line was used in 1984. If the 1984 mea- 
surements are converted in frequency differences with P(33) A2( 1). they are all within 
2 kHz of the 1982 line center determinations. Then, using the reference laser locked 
to the PF5 line, the difference frequency between the center of the P(33) A?( 1) line 
and the 0~0~ line was measured to be 10 559.9 kHz at high resolution, a result 6.5 
kHz higher than the 1980 measurement. This difference can be easily understood in 
view of the expected asymmetry of the SF6 line when its hyperhne structure is unre- 
solved. 

For P(20) of COZ, 9 measurements out of the 16 performed in 1982 were reproduced 
in 1984 within 3 kHz, but the reference line in both cases was the P(59) Az(3) SF, 
line, which has a nontotally symmetric hyperfme structure. Since this line was unre- 
solved when compared with the 0~0~ reference in 1980, our absolute frequencies may 
have an additional error of 2 or 3 kHz in this case. 

For P(22) of CO*, the beat frequency measurements performed in 1979 used the 
SF6 line about 15.69 MHz above CO2 as a reference. It was later discovered that this 
line has a complicated asymmetric structure. The 1982 and 1984 measurements of 
the 11 identified lines of SF6 used a much more symmetric triplet (24 kHz wide) 
located 78 13 + 3 kHz above the previous reference (i.e., about 23.5 MHz above COZ). 
By direct comparison of the central component of this triplet with the 0~0~ reference 
line, an absolute frequency equal to 28 25 1 965 170 f 3 kHz has been attributed to 
this new SF6 reference. All 1984 measurements are within 3.5 kHz below the 1982 
ones (and fully consistent with 1979 beat frequency measurements and the above 
change of reference line). 

As a general conclusion, it appears that, using the best of 1982 and 1984 spectra, 
and except for lines measured with the NzO laser, an upper common bound for the 
error bar equal to +5 kHz can be associated with all our measured frequencies (in- 
cluding the error introduced by the deconvolution procedure discussed below in Sub- 
section II.B.3). 

II.B. The Hyperjine Problem and the Deconvolution of Fine Structures 

1. Background on the hype&e Hamiltonian and the corresponding structures. Ide- 
ally, the analysis of the spectrum should be made with a simultaneous adjustment of 
rovibrational and hypertine parameters. Practically one must start with a two-step 
analysis and disconnect first, as much as possible, the rovibrational problem from the 
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hyperfme interactions. Assuming that a reliable rovibrational assignment of a lower 
resolution spectrum has been worked out before, the first step is to reproduce indi- 
vidually the hypertine patterns of each cluster of rovibrational lines. This step leads 
to a set of hyperfine coupling constants, with their dependence on the rovibrational 
states. This procedure has either confirmed the previous assignments, or given new 
assignments when the hyperfme structures had not been resolved before. 

Basically the calculation of these structures has followed the procedure described 
in Refs. (II, 12), and, here, we shall only recall the main facts relevant to the present 
paper, and mention the improvements needed by the better resolution and the avail- 
ability of an increased number of data. 

(i) As it is well understood now, rovibrational levels, and hence lines, generally 
appear as clusters (see, for instance, Harter (3) and references therein, especially Domey 
and Watson (58)); the energy splittings within a cluster, called the superfine splittings, 
can be extremely small, especially for high values of the quantum number R and 
toward the ends of each R manifold. Because the hyperfine operators may have nonzero 
matrix elements between different rovibrational states, one must treat simultaneously 
those states, which are close enough to be substantially mixed. Thus, the Hamiltonian 
matrix must include both rovibrational terms, which give the superfine splittings, and 
the hyperfme terms. 

Because the splittings between clusters are much larger than those within a cluster, 
it is usually sufficient to set the matrix in the basis associated with a unique rovibrational 
cluster; however, in some cases we have extended the basis to include additional neigh- 
bor states, or adjacent full clusters. The states of the basis which are obtained by 
coupling rovibrational and nuclear spin states, are noted: 

where C denotes the octahedral symmetry species of the rovibrational state and n 
distinguishes states with identical R and C. The smallest bases are associated with the 
simplest F, - F2 clusters and contain 12 hyperfme substates; the largest bases we have 
dealt with contain around 12 different rovibrational states (different (C, n)), leading 
to Hamiltonian matrices of dimension around 50. The clustering of levels is very 
similar in both vibrational states (ground and excited), except for a large scaling factor 
and, in fact, in most cases the mixing of different rovibrational states is important in 
the ground state only and not at all in the excited state. At increasing resolutions, the 
spectrum will then display first the superfine splittings (of the (Q = 1) state essentially), 
then the hyperfine structures of each superfine component; but one must remember 
that these hypertine structures will often be strongly perturbed by the ground state 
mixing. As mentioned before, for high-R values and toward the ends of R manifolds, 
the mixing can also be strong in the (u3 = 1) state (it is then even stronger in 
(v3 = 0)), and we have all kinds of situations, up to the extreme one where the superfine 
splittings are negligible in both vibrational states, which leads to what is called a su- 
perhypertine structure. 

The rovibrational terms* that we introduce in the matrix in order to calculate the 
superfine splittings are: 

’ In this part of the present work the tensorial notations of Hecht have been used. TW and T224 denote 
the main fourth-rank rovibrational tensors. The corresponding constants are related to those of Moret-Bailly 
(used in Sect. III) by: fW = 2(7/3)‘% and fzz4 = -(7/3)‘6,~. 
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( 1) the tensor centrifugal distortion operator TM4, with a constant toa which was 
originally deduced from hypertine structures (7, 21), and which splits both the ground 
and excited vibrational states; 

(2) the tensor operator Tzz4, which has nonvanishing matrix elements only for 
n3 # 0, and with a constant t224 deduced from previous rovibrational fits (7) (this 
constant is much greater than to44, hence the scaling factor). 

The matrix elements of these terms can be noted EFR(to44, t224, v3, RnC). 
In the (03 = 1) state, we also add phenomenological diagonal terms to take into 

account the effects of higher order corrections (such as those due to matrix elements 
off-diagonal in R), and which are necessary to adjust the computed superfine splittings. 
We note their contribution AEVR(RnC). 

Thus the rovibrational part of our Hamiltonian matrix is a simple diagonal matrix, 
made of 

E!R(to44,t224,v3= l,RnC)+AEvR(RnC) 

for the excited (v3 = 1) vibrational state, and of 

E FR(tow, v3 = 0, RnC) 

for the ground vibrational state (v3 = 0). 
To obtain the absolute frequencies, one should of course add scalar terms to the 

eigenvalues; their total contribution Eg(v3) has no effect on the shape of the hyperfine 
structures, but merely shifts the whole structure. 

(ii) To these rovibrational terms, we add the matrix elements of the hyperfine 
operators. The operators that were necessary to reproduce correctly the spectra are 
the scalar and tensor spin-rotation and spin-vibration, and the tensor spin-spin in- 
teraction terms. In addition we have introduced three higher order operators which 
express the dependence of the spin-rotation interaction with vibration.3 

At this stage, we are able not only to calculate a frequency for any transition between 
respective hypetfine sublevels of two rovibrational clusters, but also to define “rovi- 
brational” frequencies. These values are simply obtained by turning to zero all hyperfine 
coupling constants. In our case, since our rovibrational matrix is diagonal, the “rovi- 
brational” frequencies are expressed as 

[Eg(v3 = 1) - Eg(v3 = 0)] 

+[EFR(to44,t224,v3= 1,RnC)+AEVR(RnC)-E~R(to44,v3=0,RnC)]. (1) 

The tensor part (second bracket) gives the position of the “rovibrational” transitions 
(RnC) of a cluster, relatively to the hypertine structure. Figure 2 shows an example 
of such a structure, with the computed spectrum (as described in Subsect. II.B.3); the 
vertical bars indicate the positions of the “rovibrational” frequencies. The correspond- 
ing absolute frequencies, which we use as data in the present paper, are deduced from 
the positions of these bars, with respect to the absolute frequency calibration of the 
experimental recording. 

2. Background on the intensity theory in saturation spectroscopy and application to 
the u3 band of SF,. The fit of the hyperfme structures and the deconvolution procedure 

3 These three operators belong to a wider class of operators suggested by Michelot in her general theory 

of higher order hyperfine effects in spherical tops (33). 
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imply a detailed theoretical knowledge of the intensities of individual hyperfine com- 
ponents in saturation spectroscopy. Such a theory is still familiar only to experts in 
this specific spectroscopic technique, and we feel that, at this point, a short review of 
the main results of this intensity theory could be useful to the reader interested in the 
connection with ordinary linear spectroscopy of fine structure spectra of spherical 
tops. Indeed, in the limit of unresolved hype&e structures, this theory gives an essential 
insight into the relationship between usual selection rules and statistical weights, and 
the true hyperfine content of rovibrational lines (including parity labels), and it illus- 
trates a general principle of spectroscopic stability in nonlinear spectroscopy. 

In linear spectroscopy, as illustrated by Fig. 3a, the absorption coefficient k is simply 
given by a summation over M sublevels of a second-order density matrix diagram 
(22): 

wherefis a normalized lineshape (e.g., (l&Avb)exp[-(v - vo)‘/A&] in the Doppler 
limit), ji is the electric dipole moment operator, i is the polarization unit vector of 
the electric field, and (n,/g,) is the population of each M sublevel of the lower 
state IaF,). 

The application of the Wigner-Eckart theorem is then followed by the evaluation 
of the sum of squared 3 - j symbols, which gives the familiar one-third factor: 

= l(@‘dld”ll~Fa)12 2 _; 
h 

: 
2 I 

M&b 
z) =jl(bFbll~“‘llaF,)i?. (3) 

a 

Finally, the absorption coefficient is 

where a cross section has been displayed together with the introduction of the fine 
structure constant (Y. 

For the evaluation of the population4 in the case of SF6, we have 

4l N 
- = -exp(-E,/kBT) 
& ZVZR 

(5) 

(see, for example, Appendix II of Ref. (I)). 
The reduced matrix element can be calculated using the double Racah algebra, 

associated with Judd’s double tensors formalism and the chain of groups ‘L’O(3) 
X ‘“‘O(3) > ‘%)o) X Oh (23). With the notations of Ref. (II) for the hyperfine state 

4 In this formula, Zy and Z, are, respectively. the vibrational and rotational partition functions (taking 

spin degeneracy and the Pauli principle into account): ZV = ni_l,e [ 1 - exp(-hvi/ksT)]-d~, where d, is the 

degeneracy of the vibrational mode vi; and Z, = (8~“2/3)ol~33/2exp((uT/4) with q = B&/k,T. The Boltzmann 

factor of the lower state is exp(-E,/k,T) = exp[-@(.I + l)], and we have N = 3.2958 X 10” molecules/ 
m3 for I Torr of perfect gas, at the temperature of 293 K. 
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FIG. 3. Density matrix diagrams (22) corresponding to (a) linear absorption and (b) saturated absorption. 

These diagrams have complex conjugate analogs. There are also corresponding diagrams starting with the 

upper state population, which contribute proportionally to nb/gb with a negative sign, and which have been 

neglected for the sake of simplicity in the present paper. 

vectors and those of Griffith (57) for V and X symbols, we can write the Wigner- 
Eckart theorem for the electric dipole moment as 

((J,zg)~~MF;((J,I,)RxnCRCs)A*,; 03, (YIllj:U’OgAIg)l(J:,z;:)F:,M~‘; 

((S,db,)R’,,n’CRC’s)A*,; v;, a’) = (- 
A2u AI, A2u 

1 1 1 

X[3(2F+ 1)(2F’+ 1)]“2~([A,gJ[A2u][A~u])1’2 

x ([CJ(2z+ l))“*s&S& l)%jRAozR”” “CRA,&)K2R + 1)(2R’+ w2 

where the dipole moment operator in the rotating frame has been reduced to the first 
term of its expansion in dimensionless normal coordinates5: 

p’% 1 u) = p3q 3 (O,Vl”) with 
&kY 

113=aq3a. 

The expression of the isoscalar coefficient is 
WA 0, d) 

% ’ ~CRAI~~'CR) = (- 1 )"~RR'S,,,~C~CXSXX~[CRI/(~R + 1))“’ 

5 In their study of v4 of SF,, Person and Krohn (24) found that an additional term was needed to correctly 

reproduce the intensities of the observed lines. Such a term may also be introduced for y3. In fact, this is 
only a particular application of the general expansion of the dipole moment operator. For spherical tops, a 

general development in tensor form (similar to that of the Hamiltonian) was first introduced by Pascaud 

(25). and then generalized and successfully applied to several problems by Lo&te (26). 
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and the reduced matrix elements of D(luslu) and qp”’ are, respectively, given by 

(J,J,llD’lu,lu’llJ:,~~,) = (-l)1+J-J[3(2Jt 1)(2J’t 1)]1’2b,,T,xU (9) 

(0,;1, = 0g;u3 = O]~q:““‘l”‘~]O,;&~= 1,;~; = 1) = -(3/2)“* (10) 

so that /13 is related to the vibrational transition moment pal introduced by Fox (27) 
and Fox and Person (28) by 

cl3= ho1 v- (11) 

with ml = 0.437 f 0.005 D, according to Ref. (29) (1 D = lo-‘* esu. cm = 0.333564 
X 1O-29 C.m). 

The final result for the dipole moment matrix element is therefore (without explic- 
iting all the quantum numbers which are to be taken from Eq. (6)) 

((q.n.)l~~lU*o~A1~)I(q.n.)‘) 

X [(2Ft 1)(2F’t l)]“* 

x (2J’+ 1)“2 x (- l)F’+‘+J’+’ x 6&j&$,~(A,,, c,, C&&&,6,,&x’ (12) 

where all the selection rules appear explicitly as 6 symbols. 
If any of the quantum numbers (q.n.) loses its significance to label eigenstates of 

the Hamiltonian (because of mixing through any off-diagonal interaction, e.g., the 
hypertine Hamiltonian), new reduced matrix elements will be obtained with the coef- 
ficients (Y’* and (Y” of the transformation matrices corresponding, respectively, to the 
upper and lower energy eigenstates: 

(il(p(‘)llj) z 2 a~~~~.‘)*(y~~~~P) 
C,I, . . ’ 

X ((J’I)F’; Yl'RC,C, . . . ; v3 = i IJpL’lu’ogA]~)(l(JZ)~ JI. . . ;u3 = 0). (I 3) 

If the [(Y] matrices are almost identical in both states and if the reduced matrix elements 
have no or little dependence with C, 1, * . . (e.g., for superhyperhne structures), then, 
owing to the orthogonality of the coefficients, new selection rules 6, will result from 
the selection rules 6,,& - - * before diagonalization. 

In the low field limit of saturation spectroscopy (which corresponds to the experi- 
mental situation for ultrahigh resolution), observed signals are described by fourth- 
order density matrix diagrams (four-wave mixing), as shown on Fig. 3b. This means 
that any such process requires a quadruple product of matrix elements of the electric 
dipole moment operator, and hence four successive applications of the Wigner-Eckart 
theorem, followed by a summation over all A4 sublevel possibilities. The corresponding 
calculation can be found in Ref. (30) for each type of resonance (main two-level recoil 
peaks, crossover resonances, hyperfine coherence-induced saturation resonances). The 
sums of products of 3 - j symbols are given by 

A maa,a# = (- l)Fm+F=, c (-1)q-+qf(2kt 1) 
k=O. I ,2 
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where (a@‘a’) = (abb’a’) or (baa%‘), according to the notations of Fig. 3. This result 
is also a direct application of the Wigner-Eckart theorem in Liouville space (22). With 
the usual configuration of our spectrometer, we have q’ = q- = 1 (retroreflected 
circularly polarized light). 

As an example, these angular factors A are given by the following expressions for 
the main recoil peaks: 

f 12F2-2 

Aabba = Abaob = 

: 

15(2F- 1)2F(2F+ 1) 

2F(F+ 1) + 1 

15(2F+ l)F(F+ 1) 

for 

for 

AF= +l 

(15) 

AF=O 

with F = sup(F,, Fb). For crossover resonances similar formulae will be found in 
Ref. (30). 

Besides this A factor, the intensity of each line will be proportional also to the level 
population (n,/g,), as in the linear absorption case, and, this time, to the product of 
four (instead of two) reduced matrix elements corresponding to the relevant diagram. 

It is to be noted that, in the limit of vanishing hyperfine structures, and for a given 
value of Z, the sum over all hyperhne intensities results in a formula identical to Eq. 
(14) but with J replacing F, and with the nuclear spin degeneracy (2Z+ 1) as a mul- 
tiplicative factor, as demonstrated in Ref. (30). Then, for a given vibration-rotation 
line, the sum over possible values of Z runs only over the values allowed by the Pauli 
principle 6(AzU, C,, CS), and leads to the following statistical weights (31, 32) gS(CR) 
= & (2z+ 1): 

symmetry CR: AI, AI, 4 & Eg E, FI, FI, FQ hu 

values ofl: 0 0 - 1,3 - 1,2 1 1 0,2 - 

weight g&s(&): 1 1 0 10 0 8 3 3 6 0 

Note that our present results are consistent with those of Cantrell and Galbraith 
(59) but that we use a different theoretical approach. 

In this limit, the intensity of a vibration-rotation line defined by the transition 
(.Z, + Jb, C) is proportional to 

(16) 

where J = sup(J,, Jb) and with 

@‘Zbll~llaJ,)I” = (2Zb+ l)‘&. (17) 

For our spectra, the relative intensities of distant vibration-rotation lines are usually 
only indicative, since the laser intensity, which also comes as a multiplicative factor, 
is not kept to a constant level throughout the laser output profile, and drops down 
quickly near the mode profile edges. 

3. Synthetic spectra and derivation of vibration-rotation frequencies. Once we have 
the frequencies and intensities of all transitions between hyperIme substates, as de- 
scribed in the preceding subsections, we can draw synthetic spectra on a computer 
plotter, through a convolution with a Lorentzian lineshape (see Fig. 2 as an example). 
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The width of the lineshape is adjusted for each recording. Once a synthetic spectrum 
is drawn and satisfactorily reproduces the observed spectrum, one can retrieve the 
absolute frequencies of all transitions from the absolute frequency measurement of 
the observed contour, and, in particular, the vibration-rotation frequencies (which 
are marked with vertical bars as on Fig. 2). 

To do so, we superimpose the observed and calculated contours, both drawn at the 
same scale. Given a digitally recorded contour, one could think of a better procedure 
than a mere superposition of two drawings; however, it has not yet been possible to 
do better for the present set of data since: 

(i) the 1982 recordings were not in digital form, 
(ii) the 1984 spectra are digitalized on a HP desk-top computer which is not 

linked with the CDC computer of theoretical contours, 
(iii) the number of hyperfine components (main lines and crossovers) contributing 

to each observed feature is far too large (up to 120 in our study) to ensure a unique 
least-squares solution; however, for some specific structures with well-isolated lines, 
we have succeeded in using such a least-squares procedure both to reproduce the 
spectrum and to retrieve the hyperfme constants. 

This rather cumbersome procedure of superimposition certainly increases the un- 
certainty of the final vibration-rotation data, by introducing additive sources of errors: 

(i) superimposing the two contours and measuring the position of the bars mark- 
ing the frequencies are limited, anyway, by the thickness of the pencil line; 

(ii) the fit of the hyperfine structure is not always perfect, which leads to some 
additional freedom; 

(iii) the rovibrational terms included in the Hamiltonian are limited to the fourth 
order in our model, and work as effective terms. Using a more sophisticated rovibra- 
tional Hamiltonian (such as the one described in the next section) can change slightly 
the hyperfme parameters, which, in turn, will slightly change the positions of the 
derived rovibrational data. So we should consider that we have only done the first 
round of an iterative procedure. 

We can, however, estimate that the errors due to these considerations do not exceed 
1 kHz, which is small considering the fact that without a deconvolution it would have 
been impossible to locate the rovibrational line centers to better than 20 kHz. A 
particularly striking example is the QJ52) A,(2) line, whose two components Ai, and 
A 1 u show a splitting of 30 kHz: only a precise study of the hyperfme structure enables 
us to say that the rovibrational transition should be located exactly on top of the A Ig 
component! 

III. THE VIBRATION-ROTATION HAMILTONIAN AND THE NUMERICAL ANALYSIS 

In the case of triply degenerate vibrational levels of spherical tops (in their ground 
electronic state), the Hamiltonian developed by Moret-Bailly (34) is now recognized 
as an especially powerful tool, and has been widely used with great success during the 
last 20 years. We shall not give here a complete demonstration of its general features, 
but we think it may be useful to recall the bases of the theory, to give adequate 
formulae for the present problem, and to briefly describe the numerical procedure 
which is used to analyze such a vibrational band. 

First, let us specify that what we are going to write is adapted to A,- and I;;-type 
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vibrational levels of XY, molecules, the symmetry group of which is Td, but that most 
results are immediately applicable to Ai, and Fi, levels of XY6 octahedral molecules 
(symmetry group Oh), as we shall explain at the end of Section 1II.B. 

III.A. The Tensor Vibration-Rotation Hamiltonian in O(3) 

Using group theory and irreducible tensors algebra, Moret-Bailly (34) has shown 
that it was possible to write an a priori Hamiltonian operator for spherical tops with 
irreducible tensors of the full rotation group O(3), except when the V*(E) vibrational 
mode is excited (this restriction was later removed by Michelot (35)). This Hamiltonian 
is then a linear combination of tensors of O(3): 

H = C ‘$‘) Al (18) 
k 

where “02: results from the coupling between a rotational tensor (related to the rigid 
rotator) and vibrational ones (related to the four normal modes of XY, tetrahedral 
molecules). Since H must be invariant in any operation of the Td group, that is must 
be of symmetry Al, the total tensorial rank n may take the values 

n=0,,4,,6,,8,. - - 

as shown by the reduction in Td of the representation D”@ of O(3). Each rotational 
or vibrational term itself results from the coupling of several elementary operators. 

Basis functions are also built in tensor form, using a similar procedure, and the 
same coupling scheme. The great advantage of this formalism is that the Hamiltonian 
is, by construction, diagonal with respect to the vibrational quantum numbers us, the 
total angular quantum number J, and a symmetry label C, which represents one of 
the five irreducible representations of Td (A,, AZ, E, F, , and F2). Then, for a given 
vibrational level (given uJ, and a given J, the Hamiltonian matrix is reduced in block- 
diagonal form (each block is specified by the label C), and the diagonalization then 
takes place in these blocks of rather small dimension (for instance the largest matrix 
we dealt with in the present analysis was of dimension 75 X 75, for J = 95 and 
C = Fz). 

The calculation of the matrix elements of H requires the introduction of 3n - j 
recoupling symbols and, via the Wigner-Eckart theorem, of the F symbols adapted to 
the cubic symmetry (and known as Moret-Bailly’s F symbols). 

After diagonalization (and in the limit where the mixing of states is not important), 
each eigenvalue, that is each rovibrational level, is then labeled by four quantum 
numbers (in addition to the vibrational ones): 

(1) the total angular quantum number J, 
(2) the rotational quantum number R, related to the “pure” rotational momen- 

tum 3 = 7 - 1, where 7 is the vibrational angular momentum, 
(3) the symmetry C of the level (with respect to Td), 
(4) and a multiplicity index n, appearing when several levels have the same sym- 

metry C, for given J and R, that is when the representation D(R) of O(3) contains C 
several times in its reduction in Td. Note that all works following Moret-Bailly’s no- 
tations have n starting from zero, and use a condensed index p = (C, n). 

The tensor Hamiltonian may be developed to any order of approximation, defined 
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by the order of magnitude of the last contribution to the energy. The original work 
(34) gave a development to fourth order; it was then extended to the sixth order by 
Michelot et al. (36), from which we take the present notations. 

When the development is performed to the required order, it appears that many 
operators have proportional matrix elements and can be recast. The effective Ham- 
iltonian, for the given vibrational state, is then a linear combination of independent 
operators: 

H= CckHk (19) 

where the Hk operators are adapted to the symmetry of the molecule, whereas the 
numerical parameters ck depend on its physical nature. The analytical problem is thus 
to derive the values of these “effective molecular constants” ck from the experimental 
measurements of transition frequencies. 

III.B. The Fifth-Order Expansion of the Hamiltonian 

In previous works on spherical tops using the present formalism, the development 
of the Hamiltonian to third or fourth order was generally sufficient to give numerical 
results in excellent agreement with the experimental accuracy. In the case of heavy 
molecules, at very high resolution, an expansion to a higher order is necessary, especially 
when very-high-resolution techniques are used to measure frequencies, such as saturated 
absorption spectroscopy. In the present analysis, we decided to retain a fifth-order 
expansion, taking into account the very high accuracy of the data but also their rather 
small number. We shall see that this choice has been completely justified a posteriori. 

So, to the fifth order of approximation, the matrix elements of the Hamiltonian for 
the excited F2 vibrational state (Q or u4 in the single-level approach) are given by the 
following formula, where the quantum numbers are written in short ((q.n.)l = (J; 
t)j = 1, IJ = 1; R,pl: 

((q.n.)lHl(q.n.)‘) = [a + /L&J+ l)+ rJ2(J+ l)* + xJ3(J+ 1)3]A(R,p) 

+3\/Z[h+xJ(J+ l)+aJ2(J+ 1)2]{ 101}(2R+ 1)“2f(J,0,2)A(R,p) 

+ Sti[S +Ic/J(J+ 1)]{202}(2R+ l)“‘f(J, 1,3)A(R,p)+ {3@+pJ(J+ 1)]{044} 

Xf(J,3,5)+5\lzi[cp+oJ(J+ 1)]{242}f(J, 1,3)+31JI?z[~--b,J(J+ 1)]{143} 

Xf(J,2,4)+ 15~~{244}f(J,3,5)+(3~/2fi)c~{145}f(J,4,6)} 

X [(2R+ 1)(2R’+ 1)]1’2(-1)R(i)R’-RF~,~,~) + {%~{066}f(J,5,7)+l&&{264) 

Xf(J,5,7)-(a/2)d5{ 165}f(J,4,6)}[(2R+ 1)(2R’+ 1)]“2(-1)R(i)R’-RF(~,~,~). (20) 

For simplicity we have set the following condensed notations: 

i 

1 if R’=R and 
A(R, P) = 

P’=P 

0 otherwise 

f(J,m,n)=[(2J-m)(2J-m+ 1). . -(2J+n)]“’ 
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and the 9 - j symbol 

The F$,t,f', with n = 4 and 6, were first computed by Moret-Bailly et al. (37) for 
low J’s, then up to very-high-Jvalues by Krohn (38). Let us recall that the ti4’ symbols 
are diagonal in p when they are diagonal in R, but this is not the case for the F@’ ones, 
and that both symbols are pure imaginary numbers when (R’ - R) is odd (which 
explains the phase factor (i)” used to make the Hamiltonian matrix real). 

Similarly, in the ground state (v, = 0, all s) the Hamiltonian is not completely 
diagonal with respect to the chosen basis, and its matrix elements are 

=[PoJo(Jo+ U+yoJf(Jo+ U2+~oJ%Jo+ 1)31A(Jo,~o) 

+[tO+p,,J,,(J,,+ 1)]f(Jo,3,5)(-1)JoF~,~~+~of(Jo,5,7)(-1)JoFj4q~~~ (21) 

using the same notations as above. 
Up to the fifth order of approximation, we thus have 20 molecular constants to 

describe the excited (u3 = 1) state, and 6 for the ground state. Some of these constants 
are directly related to physical parameters. For instance: 

(1) (Y is the vibrational energy, 
(2) /3 and y (resp., PO and yo) are the inertial and the scalar centrifugal distortion 

constants in the excited (resp., ground) state, 
(3) X is connected with the Coriolis coupling coefficient 5; by 

x= -(3{3. (22) 

For most constants occurring in low-order terms of the Hamiltonian, relationships 
can be established with the parameters used in other formalisms. For example, we 
give in Table I the connection with the usual notations of Hecht (39); more detail can 
be found in Ref. (40). 

Given a set of adequate molecular constants, the numerical diagonalization of the 
Hamiltonian matrices (both in the ground and excited states) is performed, leading 
to eigenvalues which are the rovibrational energies in both states. Thus the frequencies 
of the allowed transitions are simply obtained by subtractions, according to the selection 
rules. In the usual case where internal mixing is not too important, the selection rules 
given by the general formula (12) are 

(a) AC = 0 
(b) A J = J - Jo = - 1 , 0, + 1, giving rise, respectively, to the P, Q, and R branches, 
(c) AR = R - Jo = 0 
(d) An = IZ - no = 0. 

Yet, it must be kept in mind that the last two rules are not strict and that, in many 
cases, “forbidden” lines do appear (which may bring valuable information, as will be 
specified later). 

Since a triply degenerate F2 level (~3 = 1) is characterized by the vibrational angular 
quantum number l3 = 1, we have then R = J, J + 1, and, as a consequence of the 
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TABLE I 

Effective Molecular Constants for the Ground and (uj = 1) States of ‘*SFs, 
up to the Fifth Order of Approximation 
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Molecular constant NumerIcal value (standard deviation) 

Ilrd. J.M.B. U.T.H. I" Mtir I" cm -1 l * 

-(El<‘> 

-!l/12)Zs 

(1/'2)F 
s 

2.730635624( SW/lo3 

-1.66308113: "lo-4 

-3.2186(1X .1o-y 

1.86X33(63 a10 

9.9206(91! 
_lo::l 

-1.757(103 .10-12 

28.42Y~398592,12)*10~ 

-3.928945(211 

-1.247t14; ,10-6 

-6.23(23) *,0-J' 

-1.89081685~51~ \lO+I 

-2.290804l251 *IO 
-1 

9.10842001(10)x10-2 

-5.54743(43) x10 
-9 

-1.07362(43) .10-'3 

6.2171(21) x10-1' 

3.3091f30) x10-15 

-5.86Oi33) ,10-l' 

948.10252337(40) 

-1.3105551l70~ x10 

-4.147(48) 
.IoI:1 

-2.077(793 <IO-15 

-6.?~070861(171 .~10-~ 

-7.641299(85) .rnP 
4.7899f561 

-1.7942(76) 

1.7321(85) 

-9.774(65) 

-7.36639:lOi 

-2.5?6(32, 

-1.752:451 

0.0 t 

-5.7(14) 

3.676!94) 

0.0 t 

-1.141,~2~ 

1.446(331 

4.051(10, 

X10 -4 1.5977(19) <IO -8 

.10-7 -5.985(25) .10-12 

.10-8 5.778(29) /lo-13 

In-a -~.260(221 .10-l* 

.10-l -2.457163ij5‘ *IO 

A10 
-6 

-8.~9(?1) 
$ 

.10-7 -5.84(15) .10-12 

0.0 + 

<IO-'3 -1.90!49) x10-17 

X10 -10 1.226(321 .10-14 

0.0 + 

.,a-'2 -~.8l!lll .x10-17 

.10-12 4.82!11) .<113-17 

.10-10 1.3519(74) x10-14 

Note. We give the notation of Moret-Bailly (J.M.B.) used in this paper and, whenever possible, the cor- 
respondence with Hecht’s formalism (K.T.H.), together with the indication of the nature (S = scalar, 
T = tensor) and order of magnitude of the first operator connected with the constant. All standard deviations 
within parentheses (99% confidence intervals) are in units of the last quoted digit. 
l See footnote 7. 
** Given c = 299 792 458 m/set. 
t Fixed to zero (see text). 

above selection rules, each fine level of the excited state may be reached by one and 
only one “allowed” transition from the ground state. This explains why each fine 
structure of the spectrum reproduces exactly the structure of the related group of 
energy levels. These structures are very characteristic of spherical tops and are called 
“tetrahedral” fine structures. 

Now, to close this subsection, we have to be a little more explicit about the application 
of the present formalism to the case of XY, molecules: 

The symmetry group of XY6 octahedral molecules is Oh which has 10 irreducible 
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representations (their notations are obtained from those of Td by adding the parity 
index u or g). Among the six normal modes of vibration, only v3 and v4 are (strictly 
speaking) infrared active, because they are of symmetry F,,. The ground vibrational 
state is of symmetry A rg. 

It is well known, and has been clearly established by Michelot (35) that 
(i) in a given vibrational state, two eigenfunctions which differ only by the parity 

index (u or g) lead to the same rovibrational energy (this degeneracy is removed only 
by the hyperfme interactions); 

(ii) these energies can be obtained from a rovibrational Hamiltonian which is 
formally identical to the one used for XY4 tetrahedral molecules, given a simple cor- 
respondence between vibrational symmetry labels, for example: F,,(OJ + F*(Td), 

and AI~OIJ -, AI( 
So, from the rovibrational point of view (disconnected from the hyperfine problem), 

we can use for a F,, (resp., ,4,J vibrational level of XY, spherical tops the same 
formalism and formulae as for a F2 (resp., A,) vibrational level of XY4 molecules. Yet, 
we must keep in mind that, in this case, a given rovibrational symmetry label C covers 
two degenerate states C, and C,, except for rovibrational labels AZ, E, and F2 (because 
AZg, Eg, and FIu are strictly forbidden by the Pauli principle). 

As a consequence, the “effective” spin statistical weights gs(C) we have to consider 
in the rovibrational problem for SF6 (or any XY, octahedral top with nuclear spins 
ix = 0 and ir = f) take the following values: 

symmetry: Al A2 E Fl F2 

gs(C): 1+1=2 lO+O=lO 8+0=8 3+3=6 6+0=6 

These values are to be used for the calculation of the intensities of rovibrational 
transitions, according to the general theory described in Subsection II.B.2. 

III.C. The Use of Spectroscopic ‘Band Parameters” 

For a long time, the lack of powerful computational tools, and also the comparative 
mediocrity of experimental accuracy, have led to the use of approximate perturbation 
methods in the determination of energy levels of spherical tops. The Hamiltonian of 
Moret-Bailly is especially well adapted to this purpose because, in the case of F2 (or 
F,,) vibrational states, it is almost diagonal. So, it is possible to get a rough estimate 
of the eigenvalues simply by keeping the diagonal matrix elements. Though this method 
has not been used in the present paper, we feel it is interesting to recall here its main 
features, essentially with the purpose of showing the limits of such an approximate 
procedure. 

Using the general matrix elements of Eqs. (20) and (21) and the selection rules, the 
diagonal contribution to the transition frequencies can be written in the form intro- 
duced by Bobin and Fox (41); for the P and R branches we have 

j&R, p) = m + nX + pX2 + qX3 + sX4 + tX5 + xX6 

where X = R + 1 and X = -R for the R and P branches, respectively. 
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For the Q branch we have 

In these expressions, which are valid up to the fifth order of approximation, we 
have defined 

A(X)=2X(2X+ l)/[(-l>q2X- 5). * *(2X+3)]“2 

A’(X) = 2X(2X+ l)/[(-1)x(2X- 7). * -(2X+ 5)]“2 

B(X) = 2X(2X+ 2)/[(2X- 3) + . *(2X+ 5)]“2 

B’(X) = 2X(2X+2)/[(2X- 5) - - -(2X+ 7)]“2. 

The numerical parameters m, n, p, . . . , are linear combinations of the molecular 
constants related to the ground and the excited states: we call them spectroscopic 
“band parameters.” Their appropriate expressions, up to the fifth order of approxi- 
mation, are given in Table II. We must point out that this “order of approximation” 
is defined with respect to the order of expansion of the Hamiltonian, and is related to 
the order of magnitude of the last contribution to the rovibrational energy. There is 
generally no simple connection between the order of approximation and the degree 

TABLE II 

Spectroscopic Band Parameters for u, of %F,, Caiculated from Their Expressions in Terms of the 
Molecular Constants (Last Column), and Using the Numerical Values of Table I 

Param. Value (s.d.) I" cm 
-1 

Comblnatlon of constants 

m 947.9?633577(43! a+Zh+66 

n 5.5819241(38~x10-2 6+6,+2X+106+2x+6$ 

P -1.61556?!11) ~10‘~ 

*lo-9 

B-Bo+y-yo+46+6x+16j+2a5 

9 9.602(40) 2y+2yo+n+no+2x+14$+6a5 

s -6.195(60) x10-1' 

t 5.051(62) x10-'3 

y-y"+3n-3no+4*+6a5 

3n+3no+2a5 

* -2.077(791 rlo-'5 n-no 

" -6.9893200(61)x10-5 E-60-B6+Zx+6~ 

w 7.56!28) .,0-l* Y-y-8X++ 

Y -2.456978(M) x10-5 

11 -1.X60(341 /IO 

k -1.'372;24: 
,,o::l 

~+20@3~-100T+s0c5 

-18~+2~~-20p+4~-o+90T_2bg_37c5 

3Bp+2p~+4~-4~~+~-20~+~~5+15c5 

I 9.126(513! "IO-14 22p+2po+b5+4cS 

j=Z -7.6il.9) .m-‘7 'rp-&PO 

" -1.5a(zl, ,,13-'2 4E-LEO-40p-Z0+~0-r-4b~+10c, 
, 

z' 3.65'~(16) x10- 

2" 1.1122(70~ 
x,o.:: 

425+n+3d5 

26S-Z&+d5 

2"' -1.525(43) x10-'6 45-4$ 

Note. The parameters j and z are equal at the fifth order of approximation. All values and derived standard 
deviations are in cm-‘. Please refer to the text (Sect. I1I.C) for a correct use of these parameters. 
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in J (or R) of the polynomials occurring in Eqs. (23) and (24). For instance the main 
rotational operator (related to the rigid rotator) appears in the zeroth-order Hamil- 
tonian, but gives a contribution to the energy proportional to J(J + I), and then 
contributes to the parameters n and p (or 2) in the Q branch). 

In this diagonal approximation, the terms involving the F(@ being generally small, 
it is obvious that the positions of the lines within an R manifold are proportional to 
the ti4’ symbols. The usual assignment method follows directly from this remarkable 
property (as far as fine structures do not overlap too much). Approximate values of 
the band parameters can then be deduced from the frequencies of the transitions, 
using for instance a least-squares calculation. A refinement is obtained by introducing 
corrections to the diagonal terms, usually by a first- or second-order perturbation 
method (or, sometimes, more sophisticated procedures). Yet, and this is the most 
important point we want to emphasize, the expressions of off-diagonal corrections 
that can be calculated (34, 41) involve new linear combinations of molecular constants; 
these “off-diagonal parameters” cannot be connected simply to the parameters g, 
h . . . So, only approximate expressions of the off-diagonal corrections can be written 
in ‘terms of the diagonal parameters (the only ones that can be deduced from the 
calculation). With the expressions given in Refs. (34, 41), the corrections are valid 
only up to the third order of approximation.6 

So, it appears that, finally, such an approximate procedure is valid only up to the 
third order of approximation, and that it would be inconsistent to try to determine 
more than the seven parameters appearing up to this order, namely m, n, p, q, o, g, 
and h (any other higher order parameter numerically derived from the analysis of the 
spectrum would not keep its true physical significance). Let us add that, as it is well 
known by people using this procedure, it is impossible to derive significant values of 
all the molecular constants from the band parameters only (even if the constants of 
the ground state are known). 

Nevertheless, to moderate somehow the severe criticism that we seem to bring not 
against the method, but against the often use of this method, we must say that this 
approximate procedure can be extremely useful in starting the analysis of a band, 
especially with low-resolution spectra, and also in extrapolating the calculations to 
very-high-J values (when the dimensions of the true Hamiltonian matrices become 
too large to reasonably proceed by exact diagonalization). 

The reader has probably already understood that if we want to treat the problem 
properly, it is necessary to come back to the exact expression of the rovibrational 
Hamiltonian, Eqs. (20) and (21), and to use a more adequate numerical procedure, 
especially if we want to reach the accuracy of saturation spectra. 

III.D. Determination of the Molecular Constants 

In previous analyses of the u3 band of SF6 (42-45, 7) approximate numerical methods 
were generally used, more or less similar to the one described in the preceding sub- 

6 We thank Krohn (60) for having drawn our attention to an error in the expression of the (J, J + 1) off- 

diagonal term given by Moret-Bailly. Eq. (204) of (34) or Eq. (13) of (61). This term should read: [((p + 12~ 

- 6~) - J(8c - 2~)] instead of [(p - 126 + 6~) + J(8e - 2~)], so that the off-diagonal terms can all be 

expressed in terms of diagonal band parameters up to the third order of approximation. The reader will also 

find new interesting expressions ofthe line frequencies in a first- or second-order perturbation approximation 

in the papers by Krohn and Watson (62). 
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section. The final standard deviation on the fitted lines was always much larger (by 
one or two orders of magnitude) than the experimental accuracy. So we decided to 
completely reconsider the problem, in order to reach an accuracy of the theoretical 
model close to the accuracy of the saturated absorption measurements. First, it is 
necessary to come back to the complete expansion of the vibration-rotation Hamil- 
tonian, developed to the fifth order of approximation in the present case. 

According to Eqs. (19)-(2 l), this Hamiltonian can be written, respectively, in the 
ground and excited states as 

Ho = c CokHok (25) 

and 
H3 = c c31H31 (26) 

were the cok and cjl are the molecular constants of the two levels, to be determined. 
The matrix elements of the HOk and H3, operators are calculated once and for all, and 
stored on a magnetic tape, for all needed values of Jo and J. For example, they are 
directly put into (J, C) blocks for the u3 level (up to J = 95 in the present analysis). 

From these matrix elements and for a given set of molecular constants, a second 
computer program builds the Hamiltonian matrices of the excited (u3 = 1) state (by 
blocks (J, C)) and of the related ground states (the three blocks (Jo = J, J f 1; C)). A 
full diagonalization of both the excited and the ground state matrices is performed, 
leading to the eigenvalues and the eigenvectors. The frequencies of allowed transitions 
are then calculated by differences corresponding to the selection rules (and, if required, 
of all possible “forbidden” transitions), together with their intensities at a given tem- 
perature. 

These computed frequencies have to be compared to the experimental ones, in 
order to derive corrections to the initial set of molecular constants. This is achieved 
using a linearization of the problem and a least-squares technique: 

Let T be the matrix of eigenvectors which diagonalize the Hamiltonian matrix H 
(either H,, or H3). Then the transformed matrix E: 

E =T-‘HT (27) 

is diagonal, and its nonzero elements are the energies of the related state. Using Eq. 
(25) and introducing transformed operators H bk, we can write the following equations: 

Eo = T; ’ [ c CokHoklTo = c Cok[% ‘HokTol 

k k 

= c Co&k (28) 

k 

for the ground state, and similar equations for the u3 state. Then the ith eigenvalue, 
in this state, can be estimated as the linear combination: 

Eo; = 2 Cok[Hbkli 
k 

(29) 

and the frequency of the transition from this ground state level to the jth level of the 
v3 state is 
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If Y&s is the observed frequency for this transition, then the difference vij - %&s is a 
linear combination of the corrections 8c0k and 8~1 to apply to the initial set of molecular 
constants, in order to get a better agreement between the observed and computed 
values. As far as the number of experimental data is at least equal to (and in practice 
much larger than) the number of molecular constants, these corrections can be derived, 
together with their standard deviations (confidence intervals), using the well-known 
least-squares method. 

This procedure can be repeated as many times as required. In practice it is stopped 
when all the corrections on the molecular constants become smaller than half the 
corresponding standard deviations. The standard value of the deviations between 
computed and observed frequencies has, in the same time, become minimal (its possible 
fluctuations are no longer significant). Note also that it is always possible, during the 
iterative procedure, to fix any molecular constant to a given value (or, in more refined 
programs, to tie it down to a given variation interval). Besides, the program takes care 
of the case where a difference (observed - computed) in frequencies appears to be 
abnormally large (with respect to the standard deviation of the fit): an adjustable test 
will eliminate the corresponding line from the computation. 

From this brief description of the numerical procedure, it appears that it would be 
possible to determine all the molecular constants which are involved in the Hamiltonian 
expansion. The reality is of course slightly different, because some operators which 
occur both for the ground and for the excited states happen to have equal matrix 
elements in the two states, for Jo = R; these scalar operators are related to the constants 
noted /?, y, and ?r. Because of this property and of the selection rule AR = R - Jo 
= 0, the frequencies of allowed transitions depend exactly in the same manner of the 
molecular constants in both states, and more precisely of their differences only, for 
example, 0, - PO for the main rotational operator. This is the reason why it is generally 
said that it is impossible to fit simultaneously the ground and the excited states only 
from the frequencies of “allowed” transitions of a fundamental band. This difficulty 
would be removed by the observation of “forbidden” lines, that is with AR # 0 and 
An # 0. Unfortunately, in the case of u3 of SF6, the intensities of such transitions are 
so weak that it is extremely difficult to detect them. 

Yet, there is a way to get around this difficulty. Let us consider, for example, the 
main rotational operator, which gives the energy contributions p3J(J + 1) and &&,(& 
+ 1) in the excited and ground states, respectively. From the Hamiltonian construction, 
we know that the difference Ap = ,& - PO is small compared to ,f&. Then, rather than 
introducing the operators related to P3 and PO, we can introduce one with ,& in both 
states and one with A@ in the (u3 = 1) state. If the constant B0 is unknown, or simply 
roughly estimated, we can fix to zero the “correction” Ap in a first set of iterations, 
and get a first (or better) evaluation of PO. Then, in a second set of iterations, we fix 
Do to the value obtained, and can get a first estimation of A@, and so on, by successively 
fixing PO or its correction A/3 to the (03 = 1) state. This procedure can be simultaneously 
applied to the three scalar constants ,f3, y, and r. It converges after a rather small 
number of sets of iterations, depending on the initial estimation of the constants, on 
the relative values of the corrections in the excited state, and also on the accuracy of 
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the experimental data. For SF,, as will be seen in the next subsection, very accurate 
values have been derived after only five sets of five to six iterations. 

Now, concerning the tensor operators which occur both in the ground and excited 
states, namely those related to the constants C, p, and [, there is no problem, in principle, 
for the following reason: though the matrix elements of these operators are equal in 
the ground and excited states (for given Jo and R = Jo), their exact contributions to 
the transition frequencies are no longer equal after the bases change, Eqs. (28)-(30), 
simply because the T matrices are different in the two states. Yet, these operators 
being generally almost diagonal (especially for heavy spherical tops), the difference 
between the two contributions will be significant, in the numerical computation, only 
when experimental frequencies are measured with a very high accuracy. Then the 
possibility to consider such constants as c3 and to (or p3 and po, or else t3 and to) as 
linearly independent is highly dependent on the experimental precision. When this 
opportunity is not given, we still have the possibility to use the same iterative procedure 
as for the scalar constants & y, and ?r. 

To close this section, let us recall that it has recently been proved by Tyuterev et 
al. (46) that, when we restrict the general tensor Hamiltonian (whatever the formalism 
is) to a given vibrational problem (here u3 = l), and to a given order of development, 
this leads to some ambiguity for the “effective” molecular constants which are nu- 
merically derived; indeed the solution is not unique or, in other words, all involved 
molecular constants are not necessarily linearly independent. In the case of Moret- 
Bailly’s Hamiltonian, presently used, these authors have shown that there is a linear 
relationship between the constants u and T, on one hand, and b5 and c5, on the other 
hand. Since there is (as far as we know) no logical reason to choose one rather than 
the other, we decided for the present work to arbitrarily fix to zero the two constants 
T and c5 (let us recall that this choice has no influence at all on the numerical fit of 
the frequencies). Then, for the present problem, we shall retain 18 effective molec- 
ular constants for the (uj = 1) vibrational state, together with the 6 ones of the 
ground state. 

IV. ROVIBRATIONAL ANALYSIS OF u3 OF SF, 

We have applied the formalism and the numerical method described in Section III 
to the 136 measured transitions of v3 of SF6, using the frequencies obtained after 
deconvolution of the fine structures (except for the 11 lines where the N20 laser is 
involved), as explained in Section II. First, let us mention that the rovibrational as- 
signments of these lines were already known both from previous analyses and from 
hyperfine studies, and have been confirmed as a whole. 

IV.A. Efective Molecular Constants 

In order to start the iterative procedure described in Subsection III.D, a preliminary 
estimate of the main molecular constants was needed. This was achieved by using the 
last published values of the band parameters of Ref. (7), and also some experimental 
or theoretical estimates of the ground state constants: PO = B. = 0.091084(2) cm-’ 
was given by Patterson et al. (47); to may be deduced from the value of to44 = -D, 
= 5.7(0.7) Hz observed by Bord6 et al. (7, 21) which leads to e. = 1.86(23) Hz; and 
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a theoretical estimate of y. = -0, = -6.36(7) X low9 cm-’ has been calculated by 
Berger and Aboumajd (48). 

The other ground state constants Q, po, and to were first estimated by setting to 
zero their corrections (Aa, Ap, and A{) in the (u3 = 1) state. Then, as described in 
Subsection III.D, it was possible, with the help of the very high accuracy of the measured 
frequencies (5 kHz), to have a direct estimate of all tensorial constants, both in the 
ground and excited states. The scalar constants &, , yo, and ?ro were also refined, together 
with their “corrections” in the (t+ = 1) state, using the procedure described in I1I.D. 

Finally, we got significant values for all constants involved in the fifth-order Ham- 
iltonian expansion. They are presented in Table I (in MHz and cm-‘), together with 
their standard deviations (99% confidence intervals, in units of the last quoted digit). 
When possible we recall the corresponding notation of the constant in the usual Hecht’s 
formalism. Besides, in order to facilitate the comparison with other studies, we also 
indicate the nature (scalar or tensorial) of the operator leading to the given constant, 
together with the order in the Hamiltonian expansion where the first contribution to 
the constant occurs.‘I 

Some important spectroscopic parameters can be deduced from the present mo- 
lecular constants. In particular the Coriolis coupling coefficient 5; takes the value 

5; = -X/p, = 0.69344341(20) 

and a better evaluation of the S-F bond length in the ground state can be derived 
from PO, leading to 

ro(S-F) = 1.5605(3)A. 

Let us give a few remarks about these numerical results: 
(a) All molecular constants have meaningful values, which justifies the use of a 

fifth-order expansion for the Hamiltonian; yet the constants Ap and AT (which are 
indeed of the fifth order) are barely meaningful which means that higher order terms 
(from a sixth-order expansion) would probably not bring any valuable improvement. 

(b) The determination of accurate values of the ground state constants for heavy 
spherical tops, only from allowed transitions of a fundamental band, has always been 
a tough problem. Though some results have been obtained for the main rotational 
constant B. for SF6 (63) or UFg (64) for example, the present analysis is, as far as we 
know, the first attempt to evaluate ah the molecular constants with very high accuracy. 
Moreover, the values obtained are in good agreement with the theoretical or experi- 
mental estimates which have been mentioned above. 

(c) As will be detailed in the next subsection, these values are derived from a fit 
including only 128 among the 136 available observed transitions (those with deviations 
less than 100 kHz). But it is remarkable that such accurate values can be obtained 
from about only one percent of all the allowed transitions in the studied spectral range 
(11 520 up to J = 95). This can be explained both by the extreme accuracy of the 
experimental frequencies, and by the use in the numerical fit of transitions from the 
P, Q, and R branches, with almost regularly spaced J values, from J = 2 to 95 (this 
point resulting from a good sampling by successive laser lines). 

’ It must be noted that, though & and &, result from zeroth-order operators, their difference A(3 comes 
from second-order terms. Similarly, Ay and Ar must be considered as fourth-order constants, whereas AX, 
Ap, and At are of fifth order. 
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In order to make the comparison with the most recently published analyses of this 
band (45, 7), we give in Table II the values of the spectroscopic band parameters, Eqs. 
(23) and (24), that can be calculated from our molecular constants, together with the 
adequate expressions of these parameters (up to the fifth order). This might be also of 
some interest to anyone willing to extrapolate the present rovibrational analysis to 
higher J values (in the diagonal approximation, as explained in Subsect. 1II.C). 

Let us add that, considering the standard deviations on the molecular constants, 
the absolute values of vibration-rotation energies are computed with a mean precision 
of 0.185 MHz in the ground state and 0.380 MHz in the (n3 = 1) state, for J = 50, 
and, respectively, around 2.35 and 5.45 MHz for J = 95 (of course the accuracy on 
differences, that is, on the frequencies, is much better, as will be discussed below). A 
complete listing of the rovibrational energy levels, both in the ground and the 
(uj = 1) states, can be obtained upon request. 

IV. B. The Fit of Saturated Absorption Frequencies 

The comparison between our final computed frequencies, using the molecular con- 
stants of Table I, and the measured frequencies (as defined in Sect. II) used as data, 
is presented in Table III. For each studied spectral range (each laser line) the observed 
resonances of SF6 are listed with the following data: 

(1) the assignment of the SF6 v3 rovibrational transition (branch, Jo, Co and Q), 
(2) the final measured frequency (in MHz), after deconvolution of the fine struc- 

ture from the hypetine structures, 
(3) the difference (observed - computed) in frequencies (in MHz). 

The fit from which the molecular constants have been deduced includes only the 
128 lines with deviations less than 0.100 MHz; the 8 remaining lines are indicated in 
Table III by a special mark (<). The standard deviation’ of this fit is 

Ud = 0.028 MHz = 0.93 X lO-‘j cm-’ 

which is close to the experimental accuracy, and represents a considerable improvement 
with regard to previous analyses. If we include the remaining lines in the calculation 
of (Td (without changing the molecular constants), its value raises up to 0.3 14 MHz. 
We could also try a new fit including all the 136 transitions and leading to somewhat 
different molecular constants; the new standard deviation on frequencies would be 
0.172 MHz. Yet, for the reasons that we explain below, we think that the set of 
molecular constants given in Table I leads to more consistent and reliable results. 

First, let us note that, except for the problem of lines outside the fit, the deviations 
between observed and computed frequencies do not show significant fluctuations from 
one laser line to another, even for the R( 10) line of the N20 laser, which is good 
evidence of the self-consistency of the measurements. Besides, these deviations show 
no more dependence on the quantum number J, even for the highest values, which 
confirms, once more, that the Hamiltonian expansion has been performed up to a 
sufficient order of approximation. 

s Let us recall that the unweighted standard deviation gd which is used here is defined as cd = [[Z(Y,, 

-- V,PII(N - P)P2. where N is the number of involved data, and p the number of constants derived from 

the fit (N - p is then the number of independent data). In our final numerical fit, we had N = 128 and 
p = 24. 
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TABLE III 

Comparison of Computed and Observed Frequencies for the 136 Transitions of u, of “SF, 

Measured by Saturation Spectroscopy 

Notes to the Table: 

(a) 'Ihese ateerred fmqucncies 

are not corrected of hypcrfine 

effects (See the text). 

(<) TranSition outside the fit 

(deviation larger than 0.10 MSz) 

Coincidences with P22 of CO2 

P 83 Pl(13) 28251749.116 0.484< 

P 82 F-2(10) 28251854.218 0.037 

P 82 Pl(10) 28251856.339 0.014 

P 81 Pl( S) 28251399.598 -o.OoS 

P 81 P2( 7) 28251999.615 -0.009 

P S4A2( 1) 20252005.614 0.006 

P S4 F2( 3) 28252005.893 0.003 

PS4Fl( 3) 28252006.168 0.000 

P84Al( 1) 28252006.444 -0.003 

P 83 FZ(l4) 28252056.358 0.014 

PS3E( 9) 28252136.052 -0.046 

Coincxdences with P20 of CO2 

P57Fl( 3) 28305999.064 0.006 

P 57 P2( 3) 28305999.064 0.006 

P5SF2( 3) 28306027.542 -0.066 

P 58 F1( S) 28306027.756 -0.068 

P59Pl( 3) 28306083.696 0.008 

P 60 F1( 1) 28306149.748 -1.843< 

P 60E ( 0) 28306149.854 -1.S45< 

P 60 F2( 1) 28306149.961 -1.846< 

P 59 FZ( 3) 28306151.890 -0.026 

P59A2y( 3) 28306252.637 0.102< 

P 55 PZ( 0) 28306312.965 -0.011 

P 55 Fl( 0) 28306312.965 -0.011 

P56A2( 3) 28306352.765 0.022 

P56E( 8) 28306352.765 0.022 

P 56 PZ(12) 28306352.765 0.022 

P 53 PZ(10) 28306451.162 -0.X58< 

Coincidences with PlS Of CO2 

P 33 Fl( 51 28359647.866 -0.003 

P 32 P2( 7) 28359656.406 -0.442< 

P 32 Fl( 6) 29359656.412 -0.442< 

P 33 P2( 4) 28359689.209 -0.013 

P33A2( 1) 28359780.517 0.035 

P33F2( 6) 28359891.944 -0.014 

P33E( 3) 28359915,362 -0.009 

P 33 Fl( 6) 28359960.530 0.017 

Coincidences with P16 of Co2 

Q 55 F2( 6) 28432340.258 0.017 

Q 55 Pl( 6) 28412347.656 0.037 

P46Fl( 3) 28412376.486 -0.038 

Q43Fl( 7) 28412382.721 0.040 

Q 47 Fl( 7) 28412397.039 0.014 

Q 43E ( 4) 28412430.671 0.052 

Q54W 2) 28412442.814 -0.011 

p 54 P2( 7) 28412452.980 0.010 

Q 54E ( 4) 28412457.940 0.021 

Q 41 Fl( 9) 28412167.435 -0.002 

Q41E( 5) 28412472.874 0.000 

Q 48 Fl( 4) 28412474.597 -0.013 

p 41 P2( a) 284124778.355 0.002 

Q45JW 2) 28412526.411 -0.037 

Q53P2( 6) 28412559.609 -0.014 

Q 53 Fl( 6) 28412573.094 0.008 

p 38 P2( 0) 28412581.959 0.039 

Q3SE( 0) 28412582.%9 0.042 

Q 38 Fl( 0) 28412582.976 0.039 

Q43Pl( 8) 28412599.129 -0.032 

p 45 P2( 7) 28412602.224 -0.034 

Q4SP2( 5) 28412626.007 0.033 

Q43E( 5) 28412626.400 -0.033 

Q43F2( 8) 28412662.331 -0.024 

Q47E( 4) 28412662.561 -0.008 

Q52E( 4) 28412675.428 -0.020 

Q52Fl( 6) 28412684.371 -0.011 

Q%=.( 1) 28412685.722 -0.008 

Q45Fl( 8) 28412689.322 -0.037 

~52w 2) 28412701.510 0.011 

Q 47 F2( 7) 28412736.801 -0.007 

Q 51 P2( 6) 28412795.369 -0.028 

P 4Al( 0) 28412810.623 -0.011 

Q 51 Pl( 6) 28412817.9Sl -0.002 

P 4Pl(O) 28412827.541 -0.006 

Q4'JRU 0) 28412836.556 0.009 

P 4E(O) 28412839.590 -0.001 

Q45m( 2) 28412840.627 -0.035 

QWFU 1) 28412842.743 0.011 

Coincidences with RlO of N2O (a) 

P 3 Pl( 0) 28414538.220 -0.007 

p 35 Pl( 7) 28414544.247 0.041 

p 43 Pl( 5) 28414545.046 -0.001 

P 3F2(0) 28414556.241 -0.012 

Q35E( 4) 29414557.644 0.043 

Q 39 P2( 6) 26414564.734 -0.013 

Q43E( 3) 28414567.138 -0.013 

Q35P2( 7) 28414571.252 0.050 

P 3x2( 0) 28414578.726 -0.011 

L?wau 1) 28414592.446 -0.023 

Q 37 Fl( 7) 28414593.720 0.008 

Coincidences with P14 of CO2 

R 28 Fl( 2) 28%4417.830 0.014 

R 28 E ( 1) 28464506.923 0.034 

R 28 F2( 2) 28464529.560 0.035 

R 28 A2( 0) 28464691.306 0.016 

R 28 F2( 1) 28%4712.420 0.024 

R 28 Fl( 1) 28464728.434 0.029 

R 28 Al{ 0) 28464741.935 0.031 

R 23 Pl( 2) 28464858.047 -0.085 

R 23 F2( 1) 28464858.327 -0.085 

Coincidences with PI2 of CO2 

R 70 P2( 7) 28515795.247 0.044 

R 70 F1( 7) 28515836.768 0.036 

R72E( 6) 28515843.955 0.010 

R 72 f2(10) 28515844.150 0.010 

R?2A2( 3) 28515844.541 0.009 

R 74 E ( 8) 28515857.680 0.004 

R 74 FZ(12) 28515857.682 0.005 

R 74 A2( 3) 28515857.686 0.005 

R S9 Al( 0) 28515909.384 -0.003 

R 89 E ( 0) 28515909.384 -0.003 

R S9 Pl( 1) 28515903.384 -0.003 

R 73 E ( 4) 28515913.350 0.004 

R 73 Fl( 7) 28515913.373 0.005 

R 73 Al( 2) 28515913.416 0.004 

R66A2( 0) 28516003.635 -0.003 

R 66 F2( 0) 28516003.636 -0.003 

R 66 Fl( 0) 28516003.637 -0.004 

R 66 Al( 0) 28516003.638 -0.004 

R 83 Al( 0) 28516052.029 0.003 

R 83 E ( 1) 28516052.029 0.003 

RS3Fl( 2) 28516052.029 0.009 

R 77 Fl( 5) 28516080.476 0.002 

R 77 F2( 4) 28516080.476 0.002 

R 34 R2( 7) 28516032.W6 0.000 

R 34 E (15) 28516092.006 0.000 
R 34 F2(23) 28516092.006 0.000 

R 70 Al( 2) 28516133.528 0.020 

R 86 Al( 6) 28516135.490 0.002 

R 86 E (13) 28516135.490 0.002 

R 86 Fl(19) 28516135.490 0.002 

R 69 FZ(12) 28516214.198 -0.023 

R 70 Fl( 6) 28516224.553 -0.004 

R 71 Fl( 9) 28516235.869 0.020 

R 69 E ( 8) 28516236.825 -0.051 

R67A.U 4) 28516240.568 0.015 

R 67 Fl(15) 28516240.600 0.015 

R 67 PZ(l5) 28516240.632 0.015 

R 67 A2( 5) 28516240.664 0.014 

R 71 F2( 9) 28516246.975 0.007 

R 69 Fl(13) 28516254.852 -0.058 

R 81 Fl( 3) 28516266.540 0.001 

RS1P2( 3) 28516266.540 0.001 

Note. For each laser line which has been used in the present work, we indicate the transitions of SF, which 

are in close coincidence: rovibrational assignment (branch, Jo, Ca, and n,J, final observed frequency in MHz 

(after deconvohttion of the fine structure line from its hypertine structure), and difference (obs. - talc.) 

frequencies in MHz. Lines which are marked with (0 are kept outside the numerical fit. 

As for the eight lines which irremediably remain out of the final fit, the observed 
deviations are really too large (with respect to Ud and to the experimental accuracy) 
to look for “accidental” reasons such as experimental or computational errors. On 
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the other hand, they are too small to set forth wrong rovibrational assignments (what 
is also completely excluded by the observed hyperfine structures). Moreover, it is 
striking that: 

(1) all these lines belong to the P branch, that is, are related to (R = J + 1) 
sublevels of (vJ = 1); 

(2) the corresponding values of J are very limited and almost regularly spaced 
(J = 31, 58-59, and 82); 

(3) the deviations of components of the implied multiplets (see Table III) are 
exactly the same, just as if these structures were simply shifted in their whole, inde- 
pendent of the symmetry species. 

These features are illustrated on Fig. 4, where the computed energies of the 
(u3 = 1) state have been plotted versus J. The black dots indicate the manifolds for 
which fine structures have been observed in the present work, and the arrows point 
to those structures where discrepancies appear between computed and measured fre- 
quencies. Everything seems to suggest that another vibrational level actually crosses 
the (R = J + 1) branch of u3. Such a local resonance, leading to a global shift of the 
fine structures has already been observed in the spectrum of v1 + v4 of methane and 

960. 

950. 

940. 

930. 

E - BoJ(J+l) 

-1 
cm A = J+l 

. Fine structures with 
observed transltlons 

t Observed perturbations 

0 10 20 30 40 50 60 70 80 90 J 

FIG. 4. Energy diagram for the (u3 = 1) vibrational state of SF,. The computed rovibrational energies, 

with the main rotational term peJ(/ + 1) cut out. are plotted versus J. The black dots indicate manifolds 

for which fine structures have been observed in the present work, and arrows point to those structures where 
discrepancies appear between computed and measured frequencies. 
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was attributed by Bobin and Guelachvili (49) to a crossing with the upper branches 
of the v3 + v4 level. 

In the present case, we should look for a vibrational level close to v3 which could 
interact in a similar manner. The problem seems difficult to solve. Indeed, the only 
vibrational level which is close enough to v3, and for which a real crossing with v3 is 
possible, is v4 + vg, whose center is only 13.8 cm-’ higher (around 961.9 cm-‘). Un- 
fortunately, no pure vibrational interaction can occur between the two levels because 
they are of opposite parities (respectively, F,, and AZg + Eg + F,, + F$, and the 
interaction operator would be of parity u, which is forbidden (the Hamiltonian must 

be A I&. 
But the possibility of hyperhne interactions between these two levels cannot be 

excluded a priori: for xY6 octahedral molecules, there is an elementary spin operator 
of symmetry F,,. This operator, which is noted S1(‘,F1u) by Michelot (Ref. (35) p. 
294), can appear in the Hamiltonian only when it is coupled with vibrational operators 
which are off-diagonal versus the quantum numbers u, and of parity u; and this is 
exactly what would happen in the present case. Nevertheless, although we have not 
yet carried out a complete calculation, we think that this attractive possibility must 
be dismissed for two serious reasons: 

(1) the interaction operator that we can build in this way will have matrix elements 
depending on the hyperfme quantum numbers, and the hyperhne structures therefore 
should be considerably perturbed, which is not the case; 

(2) the energy contribution of the implied operator will be certainly smaller than 
the main hyperhne terms, that is a few tenths of a MHz, whereas the observed dis- 
crepancies reach almost 2 MHz. 

So, if we reject the hyperfine interactions to explain the observed perturbations, 
there remains only the possibility of pure vibrational ones, but involving one or several 
other levels of parity u. In this case, there are three possible candidates: v5 + vg, 
v2 + Vg, and 3v6, whose centers are located, respectively, around 870.0, 990.0, and 
1040.4 cm-‘. But one must notice that these levels are too far from v3 to allow a real 
crossing with v3 for J values lower than 100. So, in this hypothesis, the perturbations 
of v3 would not be limited to a few J values but would involve, more or less strongly, 
any manifold. As a consequence, the apparent localization that we observe should be 
simply considered as the result of the limited sampling of the present measurements. 

A deeper understanding of this problem can be brought by new measurements 
involving a larger number of v3 manifolds. But these measurements must be accurate 
enough to detect perturbations as weak as a fraction of a MHz, that is about 10e5 
cm-‘. Conventional infrared techniques are then excluded, since we require a sub- 
Doppler resolution. So, we have to wait for new results from saturated absorption 
experiments involving various isotopic species of CO2 lasers. 

Anyway, if vibrational interactions are actually responsible for the observed dis- 
crepancies, only a complete calculation involving all the implied levels can bring a 
satisfactory solution to the numerical problem. One will understand that, from this 
numerical point of view, we are not yet prepared to analyze such “polyads” of heavy 
spherical tops, because of the dimensions that the Hamiltonian matrices would reach 
even at rather low-J values. Besides, the tensor form in the o(3) group, which has 
been used in the present work, would no longer be well adapted to the problem, and 
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another formalism should be introduced, for instance, the one developed by Champion 
(50) for the polyads of tetrahedral molecules. 

Then, except for new experimental and computational developments, the present 
problem will probably remain unsolved for some time. 

W.C. Calculation of the Infrared Spectrum up to J = 95 

From our final set of molecular constants (Table I), we computed the whole infrared 
spectrum of the u3 band up to J = 95, including the 11 520 allowed transitions. Of 
course it is not possible to publish the complete listing of all the frequencies, but this 
can be obtained from the authors, in paper or magnetic tape form. The accuracy of 
the computed frequencies may be estimated to be less than 0.100 MHz (except for 
the possibly perturbed transitions, where it can raise up to a few MHz, as already 
mentioned). 

At the time when our calculations were completed, we had communication from 
A. Valentin and L. Henry (51) of a spectrum recorded on the IT-IR spectrometer of 

TABLE IV 

Predicted Resonances of SF6 within + 150 MHz of Various Isotopic CO2 Laser Lines 

: Pm 

: Pm 

: Pm 

: !?20 

: Pm 

: PZO 

: PC?9 

: P29 

: P29 

: P29 

: P.29 

: b-29 

: PZ9 

: I?29 

: PZ9 

: Pm 

: PZ9 

: P25 

: P25 

: P25 

: P25 

: PC?5 

: PZ5 

: P24 

: PZ4 

-74.426 

-74.425 

Note. For each isotope we give the rovibrational assignment of the SF, transitions followed by their 

computed frequencies, the involved CO2 line, and the computed detunings (SF, - CO*), with respect to the 

frequencies given by Freed et al. (52). All values are in MHz. 
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TABLE IV-Continued 

12-16-18 ( continued ) 

: P24 

: P24 

: PZ4 

: P24 

: P24 

: P24 

: P24 

: P24 

: P24 

: P23 

: PZ3 

: PZ3 

: P.23 

: P23 

: P23 

: P23 

: P23 

: PZ3 

: P23 

: P23 

: P23 

: P23 

: PZ3 

: PZ3 

: P23 

: P23 

: P23 

: P23 

: P23 

: P23 

: PZ3 

: PZ3 

: P23 

: P23 

: PZ3 

: P23 

: P23 

: PZ3 

: E-23 

: P23 

: P23 

: P23 

: P.23 

R42 

R42 

R42 

R42 

R42 

R42 

R42 

R42 

R42 

R42 

R42 

R42 

lx** 

R42 

R42 

the Laboratoire de Spectronomie of Paris. The resolution is 1.2 X 1O-3 cm-’ and the 
absolute calibration of wavenumbers (with reference to CO* lines) is about 0.2 X 10m3 
cm-‘. Unfortunately the pressure of the gas is rather high and most v3 lines are blended. 
Despite this (and the fact that many hot bands are excited at room temperature), we 
could identify and assign all the computed transitions, up to J = 95. Of course, at this 
resolution, almost all lines are multiplets, some Q lines covering up to 50 different 
transitions. The standard deviation between our computed wavenumbers and the 
observed ones is 1.2 X 10e3 cm-‘, including all transitions, which is close to the 
HWHM of single nonblended lines (most lines being two or three times wider). As 
mentioned above, the resolution, though remarkable for this type of spectroscopy, is 
too weak to show evidence of the interaction between v3 and other vibrational levels. 

To complete this section, and in order to bring to experimentalists valuable infor- 
mation for the development of new measurements, we give a list of calculated coin- 
cidences between SF6 and laser lines of other isotopic species of CO2 (Table IV). For 
internal consistency, all the reference frequencies of COz lines have been taken from 
Freed et al. (52) where the mean accuracy is only 50 to 60 kHz. In Table IV, we give, 
for each isotopic species, the SF6 rovibrational assignments followed by the computed 
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TABLE IV-Continued 

-52.160 

-52.160 

73.038 

74.454 

75.818 

118.250 

1*0.006 

6; 284666505.314 : R56 

4, 28466506.730 : R.56 

7, 284666508.094 : ix56 

5) 28466550.526 : le.6 

4, 284666552.282 : It56 

frequencies and detunings (SF6 - C02) (in MHz). To be short the coincidences are 
given only within +150 MHz from the COz line centers. More extended tables can 
also be obtained from the authors. Yet this list already shows what wonderful play- 
ground the u3 band of the SF6 molecule is for saturated absorption spectroscopy! 

V. CONCLUSIONS 

Even though the results presented in this paper appear to represent a considerable 
improvement in the rovibrational analysis of the u3 band of SF6 and demonstrate the 
power of the model which we have used in association with very-high-accuracy mea- 
surements, we have to investigate how further refinements could be made. 

First, in a midterm approach of the problem, we may consider two directions of 
improvement: 

(i) As was already mentioned in Section II, a simultaneous treatment of the 
rovibrational and the hyperhne problems can hardly be carried out, given the extreme 
complexity and variety of hyperfme structures. But a further iteration between rovi- 
brational results and the hyperhne deconvolution procedure should be performed, 
leading to a somewhat better determination of both types of molecular constants. 
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TABLE IV-Continued 

(ii) Valuable information can also be brought by additional saturated absorption 
measurements involving isotopic CO2 lasers; Table IV shows that such experiments 
would be particularly adequate for SF6. The accuracy of the molecular constants 
derived from a larger set of data would be improved, and one can even expect that 
the most important sixth-order contributions could be estimated. 

Now, in a long-term perspective, two other directions are also to be investigated: 
(i) First, as mentioned in Section III, the simultaneous fit of the ground and 

excited state molecular constants would be greatly improved if “forbidden” transitions 
were observed. Although the intensities of such lines are extremely weak in the case 
of SF6 ,9 the recent progress in the sensitivity of laser spectroscopy is so important that 
the observation of such transitions may be expected in the future (we have recently 

9 For instance, all eigenvectors for J = 95 represent rovibrational states which are pure to better than 

99.6%. Then, in linear absorption spectroscopy, for example, the forbidden lines will have relative intensities 

less than 0.4% of the one of the allowed transitions, which is consistent with the estimation obtained by 

Galbraith et al. (65) from approximations involving clustered levels. In saturation spectroscopy, the intensity 
ratio of forbidden and allowed transitions will be even smaller since the power four of the dipole moment 

is involved in the calculation. 
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(4) demonstrated the possibility of recording very weak lines and crossover resonances 
with a good long-term frequency control). 

(ii) From the vibration-rotation point of view, we have already pointed out that 
a global analysis of v3 and its interacting levels would probably remove the important 
discrepancies appearing for some observed lines. Such treatments of polyads of vibra- 
tional levels can be done using the formalism developed by Champion (50). Many 
analyses have been worked out at the Dijon Laboratory for light spherical tops; among 
the most recent studies, we must quote those concerning the dyads (v2/vq) of “CH4 
(66), SiH4 (67), and “CD4 (68); the dyads (vr/v3) of SiI& (69) and GeH4 (70); and the 
pentad (v,/v,/~v,/~v,/v~ + v4) of 12CH4 (71). All these analyses lead to standard de- 
viations of the fitted lines close to the experimental accuracy (typically 1O-4 cm-’ for 
FI-IR spectra). In the case of v3 of SF6, with the help of extended saturation spec- 
troscopy data, a similar procedure can be expected to reach the kilohertz accuracy. 
For the moment, the numerical computation involved in such a polyad treatment 
can hardly be foreseen for heavy molecules, because of the dimensions of the Ham- 
iltonian matrices and of the number of implied spectroscopic parameters. Besides, 
this procedure requires experimental data involving transitions to (or from) all implied 
vibrational levels. Presently, such data are not available for SF,, except for a few 
measurements of harmonic bands (47, 53, 54) or hot bands lines (55). Nevertheless, 
the increasing progress in experimental and computational techniques allow us to 
think that these polyad calculations will be performed within the next 10 years. We 
should just remember that 10 years ago, though the theoretical material had already 
been known for a long time, a numerical analysis with the accuracy which is achieved 
in the present work was hardly conceivable! 

As a final conclusion, let us point out that our analysis program applies to any F2 
or F1, rovibrational band of a spherical top, but is of course especially adapted to 
heavy molecules (with J values up to 95, presently), either tetrahedral (SiF4, Ru04, 
Xe04. - * ) or octahedral ones (mainly the hexalluorides: WF6, UF, - - * ). It has recently 
been used with success for the v3 band of the four main isotopic species of 0s04, with 
a IT-IR spectrum (56); an extension of this work is now in progress since, on one 
hand, new isotopic FT spectra have been recorded and, on the other hand, considerable 
work has also been pursued, using saturated absorption spectroscopy, for many years 
(1, 4, 7, 17-19). A similar program could then follow on the v3 band of SiF,, for which 
many close coincidences with CO2 lines have been pointed out (72) and already assigned 
in a detailed analysis of this band (73). 
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