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An analysis has been made of the vibration-rotation structure of the »; band of 3?SFs from
measurements, by saturated absorption spectroscopy, of the frequencies for 136 transitions in
close coincidence with CO, and N,O laser lines in the 28-THz region. After deconvolution of the
fine structure lines from their hyperfine structures, the centers of vibration—rotation transitions
are given with a 5-kHz uncertainty. They are analyzed using the tensor Hamiltonian of Moret-
Bailly, developed to the fifth order of approximation. An iterative procedure, using full diago-
naiization of the Hamiitonian matrices, ieads to a very accurate determination of i8 effective
molecular constants of the (v; = 1) excited state, together with 6 constants of the ground state
{both for scalar and tensor terms). For instance, the inertial constant of the ground state is
8o = By = 0.0910842001(10) cm™', the vibrational energy is & = v; = 948.16252337(40) cm™',
and the Coriolis coupling coefficient is {3 = 0.69344341(20). The recorded transitions, ranging
from P(84) to R(94), are reproduced with a standard deviation o4 = 28 kHz ~ 0.93 X 10~¢ cm™".

A few transitions remain out of the fit, and the nossibility of resonances with close vibrational
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levels is briefly discussed. We also give the predicted positions for SF transitions in close coincidence
with laser lines of various isotopic species of CO,. © 1987 Academic Press, Inc.

I. INTRODUCTION

The advent of laser absolute frequency measurements has drastically changed the
character of infrared molecular spectroscopy, first, through a qualitative shift from
wavelength to frequency measurements, second, through a quantitative jump in ac-

s anmnce nedame A oIt 0 Ao QAT AT linna frariiamay manaiirass andt

Luldby‘ ALLUDD ULUCLD Ul luasuu.uuc, db a uuuacqucuCc, llllC Hoyueuvy lllCaDulblllCllLb
are now performed in kilohertz instead of thousandths of cm™ (1073 cm ™! = 30 MHz).

In a first step, sub-Doppler spectroscopic techniques have revealed many superfine,
hyperfine, and superhyperfine features of tight clusters or of individual vibration-
rotation lines. But another important question, which comes to mind next, is to find
out whether such techniques can also bring a better global understanding of a full
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vibration-rotation band.
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Among all possible varieties of molecular spectra, one of the most extensively studied
and well-known types of band is the v; band of spherical tops (with the possible ex-
ception of the CO; laser bands themselves). One reason is of course the present interest
stimulated by laser isotope separation, but even long before this motivation was put
forward, the high symmetry of these molecules had attracted the attention of many
group theorists.

Furthermore, since the advent of lasers, a remarkable series of coincidences between
laser emission lines and absorption bands has favored the »; bands of spherical tops:
this has been the case for methane at 3.39 um. Also a remarkable match of frequencies
has been found between CO, laser lines and the »; bands of SFs, OsO4, and SiF,, to
quote only a few.

At this point, the »; band of SFs appears as a naturally good candidate for trying
to answer the question raised above in the case of nonlinear polyatomic molecules,
and the present paper is a first successful attempt to fit such a vibration-rotation band
at the 30-kHz (~107¢ cm™') level.

In Section II, we present an historical survey of our frequency measurements, and
show that a final common accuracy of 5 kHz may be retained (except when the N,O
laser is involved). Then a brief discussion of hyperfine interactions in spherical tops
is given, in order to show how the centers of vibration-rotation lines can be derived
from the various superfine, hyperfine, or superhyperfine structures. A complete cal-
culation of line intensities is also presented.

In Section III, we develop the theoretical background for the present analysis, using
the spherical tensor Hamiltonian introduced by J. Moret-Bailly in 1961. It may be
surprising for the reader to find here again the description of this formalism, more
than 20 years after its first publication. The reason is that, although this theory is now
widely used by the specialists of spherical tops, it has not always been correctly or
completely used. So, this section should be considered as a guide, where we give
explicit formulae for the Hamiltonian matrix elements (in a triply degenerate vibra-
tional state), and a short description of the analysis procedure, especially from the
numerical point of view.

Finally, the analysis of »; of SFs is presented in Section IV. Effective molecular
constants for the ground and for the (v; = 1) states are tabulated. Computed and
measured frequencies are compared for the 136 transitions which are involved in the
analysis. A brief discussion suggests an explanation for the discrepancies which are
observed for a few lines. A list of predicted close coincidences between lines of SFs
and lines of other isotopic species of CQ, is also published.

II. HISTORICAL DEVELOPMENT, PRESENTATION, AND
ACCURACY OF THE MEASUREMENTS

The set of vibration-rotation frequencies used in this work has been obtained from
spectroscopic structures recorded at different periods during the years 19761984,
with the saturation spectrometer of Villetaneuse at various stages of its development.
One will find a full presentation of this spectrometer and of its laser sources in Ref.
(I). The CO, and N,O laser lines which have been used in this series of measurements
on the SF molecule are shown on Fig. 1, together with a contour of the v;-band region
of SF¢. The hyperfine structure of most of the recorded lines is now well resolved,
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FIG. 1. The envelope of the v; band of SF, recorded on a Girard grid spectrometer by Brunet and Perez
(2), is shown on the left part, while the right part of the figure displays the grid of CO, and N,O (R10) laser
lines which have been used in the present work to sample the band, together with a few of the frequency
markers (/7) used for the absolute frequency calibration of our saturation spectra.

with the exception of the lines recorded with the N,O laser which were never studied
again at the highest possible resolution.

The detailed study of this hyperfine structure was the primary motivation for the
continued interest in pushing resolution and accuracy, but it appeared that the number
of vibration—rotation lines which happened to be known after these years was large
enough to become a significant test of the vibration-rotation Hamiltonian itself. These
various vibration-rotation line frequencies have been determined with very different
accuracies, depending on experimental techniques available at each period of time
along these years of building the spectrometer, and, as we shall see, the set of data has
therefore a great deal of inhomogeneity when used toward this new goal of determining
vibration~rotation constants. Nevertheless, the overall experimental accuracy is, in
the end, comparable or even slightly better than the standard deviation of the theoretical
fit, which can be considered, perhaps, as the most comfortable situation (for a while!).



94 BOBIN ET AL.

A presentation of all the presently available data, and associated accuracy, is given is
Subsection IL.A.

The combined superfine and hyperfine levels of structures (which eventually and
ultimately collapse into superhyperfine structures (3, 4)) result in complicated patterns,
all of which will be presented in a future atlas, together with the corresponding cal-
culated spectra. In the present paper, we limit ourselves to the fine structure problem.
This, somehow arbitrary, separation requires a deconvolution of every vibration-
rotation line from its hyperfine structure, which provides a determination of the vi-
bration-rotation transition frequencies in the limit of all hyperfine constants turned
to zero. This deconvolution procedure is presented in Subsection II.B.

II.A. Chronological Evolution of Line Frequency Measurements in Saturated
Absorption Spectroscopy around 10 um

Around 1977, i.e., before the era of frequency-controlled waveguide lasers, three
kinds of data were available:

(1) a small number of frequency-calibrated and well-resolved hyperfine or su-
perfine structures, corresponding to the few lines that could be reached with conven-
tional low-pressure CO; lasers, e.g., P(33) 45(1), R(28) Ax(0), or P(59) Ax(3) (5), or
the Q(38) F»(0)-E(0)-F,(0) superfine triplet (6, 7), all recorded with a 5-kHz HWHM
(half-width at half-maximum);

(2) a much larger set of beat frequencies between two lasers locked to individual
fine structure lines that could be reached with high-pressure waveguide CO, lasers,
but without any detailed knowledge of the structures within these lines (linewidth of
the order of 20 to 40 kHz);

(3) finally, a few oscilloscope pictures of expected tight superfine doublets (e.g.,
R(29) F1(2)-Fx(1) or P(58) F,(9)-F,(8)) exhibited more complicated structures which
were barely resolved and not understood at that time, and from which only approximate
line centers could be evaluated.

Spectroscopic landscapes, corresponding to each CO; laser line and where all these
SF; lines are displayed, were also recorded at the same period by a simple frequency
sweep of the free-running waveguide laser for P(12) (I, 8), P(14) (1, 8, 9), P(16)
(1, 10-12), P(18)(7), and P(20) (1).

From this first set of measurements, 94 absolute frequencies of vibration-rotation
lines, which had been assigned from previous diode laser spectra (43, 45), were known
with respect to CO; lines in 1977 (using saturated fluorescence in CO, (/3-15)), and
could be used for a first fit of the band, with only 12 spectroscopic parameters, and a
standard deviation of the order of 300 kHz (7).

In 1979 the spectra corresponding to P(22) of CO, (/1) and R(10) of the N,O lasers
(1, 16) were investigated, to reach, respectively, high-J lines of the P branch of SFs
and the P(3) manifold.

The next major step has been the elaboration of a new grid of absolute frequency
markers in the beginning of 1980, which was based upon the very narrow OsO;, res-
onances (/7, 18), in order to replace the CO, and N,O grid which was inaccurate at
that time; thanks to these measurements, a 20-kHz correction was brought to the CO,
reference lines of Ref. (14). A precise connection between these new OsO, markers
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and SF lines was also worked out at the same time, and provided one or several
accurately known reference SF; lines, for each of the previously quoted SF¢ waveguide
spectra (17) (however, these SFs lines have hyperfine structures and, depending on
the symmetry of these structures, the line centers of the unresolved lines may have a
few kilohertz absolute frequency uncertainty).

A second overall survey of the v; band of SFg, using the frequency offset-locking
technique with a phase-locked waveguide laser, was performed in January 1982. In
this technique, a low-pressure laser is used as a reference laser and is locked to the
third derivative of a saturated absorption peak in auxiliary absorption cells. The goal
is to obtain, for this first laser, the best long-term frequency stability in addition to a
good spectral purity (~ 10 Hz). Then, the broadband (600 MHz) waveguide laser is
frequency controlled by phase locking the beat note of these two lasers to the tunable
frequency produced by a generator. With this method, the hyperfine structure of 104
vibration-rotation lines was resolved with the P(12) to P(22) lines of CO,. The accuracy
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the symmetry of the reference lines, and also by nonlinearities of the frequency sweep
across the structures, which was then achieved by a purely analogic method: the fre-
quency generator of the phase-lock loop was swept by a low-frequency voltage ramp
and the frequency deviations introduced in the frequency axis by this system could
reach values of the order of 1 kHz over a given hyperfine structure. This problem was
later solved by the use of a programmable R.F. synthesizer. Also, in 1983, the spec-
trometer was fully computerized, which means that not only the frequency control
(synthesizer, frequency counters) but also the data averaging were driven by a computer
(HP 9826 model), thus replacing the analogic recording of spectra on an X-Y plotter
with a digital recording on disks, with a very accurate correspondence between channels
and frequency detuning (the linearity of the frequency axis depending only upon the
synthesizer stability, of the order of a few Hertz).

In 1984, 21 new hyperfine structures were added to the 104 previously recorded in
1982. The absolute frequency accuracy of these 1984 data was then only limited by
that of the reference frequency. The reference laser frequency may first suffer from a
lack of permanent control of the setting of the true center of the reference line. Drifts
may occur owing to time-dependent electronic offsets (induced, for example, by room-
temperature changes along the day) and also owing to a time-dependent signal baseline
(induced, for example, by slow pressure changes in the absorption cell). With a 100-
to 200-kHz peak-to-peak linewidth, small offsets or a slightly asymmetric shape of the
error signal can easily result in a few kilohertz shift. Any slight misadjustment of the
laser beam geometry for the reference laser may be the source of such an asymmetry.
Also, for a number of measurements, a poor choice of reference line (any line with
internal structure such as the SF; lines discussed above) has introduced an uncertainty
on absolute frequencies of the same magnitude, i.e., of the order of 5 kHz.

Presently this reference problem is taken care of by sequential scanning of the
measured line and of a reference line, using the same cell and the same measurement
laser, and hence with the same laser beam geometry. In this way the reference laser
frequency is eliminated, except for possible slow drifts during the measurement time
(less than 10 Hz/min) which are tracked and corrected for by the computer. Finally,
the reference line should be chosen, whenever possible, among the markers free of
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structure. In this respect, the most recent progress achieved during 1984-1985 in the
calibration of saturation spectra around 10 um was the high precision link established
between the CO, and OsO, grids of frequency markers (4, 19). This connection was
made possible thanks to the direct observation of supernarrow (2 kHz HWHM) sat-
urated absorption resonances in low-pressure CO, (about 5 X 10~° Torr) over both a
long path length (108 m) and a long integration time (20 min), and is also a consequence
of the long-term computer control of the laser frequency, including frequency drifts
of the reference laser. The link was established with the P(12) and P(14) lines, of
direct importance in the SF4 »;-band region, and also for the R(10) line of CO, which
has been measured with respect to an QsO, line whose absolute frequency is known
with a 50-Hz accuracy (20). The immediate result is a high degree of confidence in
the absolute frequency of our OsO, and CO, markers, at the kilohertz level. The long-
term result is the clear possibility to calibrate saturation spectra at the subkilohertz
level of accuracy, if one is willing to spend enough time on each line to be measured.

Indeed, the main remaining source of error will still be the lineshape symmetry (of
narrow lines only), which has to be carefully checked by systematic studies of the
dependence with the laser beam geometry, laser power, gas pressure, and modulation
parameters (frequency and modulation index).

Since the measurements used in the present paper correspond to so many different
steps in the quality of the spectrometer and to unequal choices of reference lines, we
have to discuss case by case the final estimated uncertainty.

For the P(12) CO, laser line, most measurements, both in 1982 and 1984, have
used the low-frequency component A4,(3), of the P(39) superfine doublet of '?0sO,
to lock the reference laser frequency. A comparison of 10 measurements which were
performed both in 1982 and 1984 shows that the absolute frequency of measured lines
may vary by as much as +3.1 kHz, owing quite likely to a different adjustment of the
reference laser. To include these extreme cases we will adopt a conservative error
margin of +5 kHz. The R(83) and R(94) clusters were measured only in 1982 with
R(66) of SF; as the reference; given the slightly asymmetric hyperfine structure of this
line, an error limit of +5 kHz appears also as a reasonable estimate in these two cases.

For the P(14) CO; laser line, six lines were accurately measured both in 1982 and
1984. The four lines for which the good OsO, reference line at 28 464 676 938.5 kHz
was used are within 2 kHz in each case (R(28) Fy(1), F\(1), E(1), and Fx(2)). In the
case of the complicated R(29) F(2)-F(1) superfine doublet (which is illustrated by
Fig. 2), a different reference line was used in 1984 (the R(28) 45(0) line of SF¢) and
the corresponding frequencies are found, respectively, 1.4 and 4.0 kHz lower than in
1982. These discrepancies illustrate again uncontrolled shifts and drifts of the reference
laser frequency which were not set for all measurements with the same accuracy. An
error bar of +5 kHz should again apply to all cases.

In the case of the N,O R(10) laser line, two lines, Q(40) A4,(1) and Q(37) Fi(7),
belong to the reference grid established in 1980, and are known to +6 kHz. Other line
frequencies can be obtained through the beat measurements of 1979 with the reference
laser locked to (X37) F(7), and their absolute frequencies have an overall uncertainty
better than +10 kHz, except for the P(3) A>(0) and F,(0) lines which have a wider
unresolved hyperfine structure and, thus, cannot be defined to better than +20 kHz.
Finally, the P(3) F;(0) frequency was never measured by beating two locked lasers
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together, but only by a fast reading of the line center frequency, and therefore cannot
be claimed to be known to better than +50 kHz. The Q line frequencies had also been
estimated in 1979, with a +15-kHz accuracy, by a direct comparison with the N,O
line center (at 17.725 + 0.010 MHz from Q(37) F(7)), to which the reference laser
had been locked using the saturated fluorescence technique.

For P(16) of CO,, the reference for 1982 and 1984 measurements has been the
narrow and isolated SF, Q(43) F,(8) line whose absolute frequency measured against
050, has been found to be 28 412 599 128.7 = 2.0 kHz (at —23 982 + 1 kHz from
the OsQ, line and +16 660 + 2 kHz from Q(38) E(0) of SF¢). Twenty-one measure-

ments common to 1982 and 1984, among the total number of 39, show an internal

consistency of +2 kHz.

On the P(18) CO, line, the reference laser was locked to P(33) A,(1) of SFs for the
1982 set of measurements, whereas a PFs line was used in 1984. If the 1984 mea-
surements are converted in frequency differences with P(33) 4,(1), they are all within
2 kHz of the 1982 line center determinations. Then, using the reference laser locked
to the PF; line, the difference frequency between the center of the P(33) A4,(1) line
and the OsO, line was measured to be 10 559.9 kHz at high resolution, a result 6.5

kHz higher than the 1980 measurement. This difference can be easily understood in

view of the expected asymmetry of the SF¢ line when its hyperfine structure is unre-
solved.

For P(20) of CO;, 9 measurements out of the 16 performed in 1982 were reproduced
in 1984 within 3 kHz, but the reference line in both cases was the P(59) A4,(3) SF;
line, which has a nontotally symmetric hyperfine structure. Since this line was unre-
solved when compared with the OsO, reference in 1980, our absolute frequencies may
have an additional error of 2 or 3 kHz in this case.

L = DI ~F OO +hhn + £ + . RO I ~
For P(22) of CO,, the beat frequency measurements performed in 1979 used the

SFg line about 15.69 MHz above CO, as a reference. It was later discovered that this
line has a complicated asymmetric structure. The 1982 and 1984 measurements of
the 11 identified lines of SFs used a much more symmetric triplet (24 kHz wide)
located 7813 = 3 kHz above the previous reference (i.e., about 23.5 MHz above CO,).
By direct comparison of the central component of this triplet with the OsQO, reference
line, an absolute frequency equal to 28 251 965 170 + 3 kHz has been attributed to
this new SF6 reference. All 1984 measurements are within 3.5 kHz below the 1982
ones (and fully consistent with 1979 beat frequency measurements and the above
change of reference line).

As a general conclusion, it appears that, using the best of 1982 and 1984 spectra,
and except for lines measured with the N,O laser, an upper common bound for the
error bar equal to =5 kHz can be associated with all our measured frequencies (in-
cluding the error introduced by the deconvolution procedure discussed below in Sub-

section IL.B.3).

I1.B. The Hyperfine Problem and the Deconvolution of Fine Structures

1. Background on the hyperfine Hamiltonian and the corresponding structures. 1de-
ally, the analysis of the spectrum should be made with a simultaneous adjustment of
rovibrational and hyperfine parameters. Practically one must start with a two-step
analysis and disconnect first, as much as possible, the rovibrational problem from the
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hyperfine interactions. Assuming that a reliable rovibrational assignment of a lower
resolution spectrum has been worked out before, the first step is to reproduce indi-
vidually the hyperfine patterns of each cluster of rovibrational lines. This step leads
to a set of hyperfine coupling constants, with their dependence on the rovibrational
states. This procedure has either confirmed the previous assignments, or given new
assignments when the hyperfine structures had not been resolved before.

Basically the calculation of these structures has followed the procedure described
in Refs. (11, 12), and, here, we shall only recall the main facts relevant to the present
paper, and mention the improvements needed by the better resolution and the avail-
ability of an increased number of data.

(i) As it is well understood now, rovibrational levels, and hence lines, generally
appear as clusters (see, for instance, Harter (3) and references therein, especially Dorney
and Watson (58)); the energy splittings within a cluster, called the superfine splittings,
can be extremely small, especially for high values of the quantum number R and
toward the ends of each R manifold. Because the hyperfine operators may have nonzero
matrix elements between different rovibrational states, one must treat simultaneously
those states, which are close enough to be substantially mixed. Thus, the Hamiltonian
matrix must include both rovibrational terms, which give the superfine splittings, and
the hyperfine terms.

Because the splittings between clusters are much larger than those within a cluster,
it is usually sufficient to set the matrix in the basis associated with a unique rovibrational
cluster; however, in some cases we have extended the basis to include additional neigh-
bor states, or adjacent full clusters. The states of the basis which are obtained by
coupling rovibrational and nuclear spin states, are noted:

(J, DFMg;(J, )R, nC;vs)

where C denotes the octahedral symmetry species of the rovibrational state and n
distinguishes states with identical R and C. The smallest bases are associated with the
simplest F; — F) clusters and contain 12 hyperfine substates; the largest bases we have
dealt with contain around 12 different rovibrational states (different (C, n)), leading
to Hamiltonian matrices of dimension around 50. The clustering of levels is very
similar in both vibrational states (ground and excited), except for a large scaling factor
and, in fact, in most cases the mixing of different rovibrational states is important in
the ground state only and not at all in the excited state. At increasing resolutions, the
spectrum will then display first the superfine splittings (of the (v; = 1) state essentially),
then the hyperfine structures of each superfine component; but one must remember
that these hyperfine structures will often be strongly perturbed by the ground state
mixing. As mentioned before, for high-R values and toward the ends of R manifolds,
the mixing can also be strong in the (v; = 1) state (it is then even stronger in
(v3 = 0)), and we have all kinds of situations, up to the extreme one where the superfine
splittings are negligible in both vibrational states, which leads to what is called a su-
perhyperfine structure.

The rovibrational terms? that we introduce in the matrix in order to calculate the
superfine splittings are:

*1In this part of the present work the tensorial notations of Hecht have been used. Toss and T, denote
the main fourth-rank rovibrational tensors. The corresponding constants are related to those of Moret-Bailly
(used in Sect. III) by: fg44 = 2(7/3)e and 254 = —(7/3)V¢.
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(1) the tensor centrifugal distortion operator T4, with a constant fo44 which w
nnmnallv deduced from hvnerfine structures (7, 21, and which splits both the grou d
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and excxted vibrational states;
(2) the tensor operator T4, which has nonvanishing matrix elements only for
v; # 0, and with a constant #,y, deduced from previous rovibrational fits (7) (this
constant is much greater than #y44, hence the scaling factor).
The matrix elements of these terms can be noted E R(tous, t224, 03, RC).
In the (v; = 1) state, we also add phenomenological diagonal terms to take into
account the effects of higher order corrections (such as those due to matrix elements

(\“‘ A"]ﬂf\ﬁﬂl 1im D\ ')ﬂl] \Ilh I"I’\ 1 m ﬂﬂ"l.l
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We note their contribution A E*R(RnC).
Thus the rovibrational part of our Hamiltonian matrix is a simple diagonal matrix,

made of
E(toas, t224,v3=1,RnC) + AEVR(RnC)

for the excited (v; = 1) vibrationai state, and of
E(toas,v3=0,RnC)

for the ground vibrational state (v; = 0).
To obtain the absolute frequencies, one should of course add scalar terms to the

VR
eigenvalues; their total contribution E's;'(v3) has no effect on the shape of the hyperfine

structures, but merely shifts the whole structure.

(i1) To these rovibrational terms, we add the matrix elements of the hyperfine
operators. The operators that were necessary to reproduce correctly the spectra are
the scalar and tensor spin-rotation and spin-vibration, and the tensor spin-spin in-
teraction terms. In addition we have introduced three higher order operators which
express the dependence of the spin-rotation interaction with vibration.?

At this stage we are able not only to calculate a frequency for any transition between
lCDpCUllVC uypcxuuc Sublcvcla Uf I.WU 1uv1u14uuua1 uluawlo, bul. alau 10 dCﬁllC I'G'v'i-
brational” frequencies. These values are simply obtained by turning to zero all hyperfine
coupling constants. In our case, since our rovibrational matrix is diagonal, the “rovi-
brational” frequencies are expressed as

[EsX(v3=1)— E&X (v;=0)]
+ [E(toaas 1224, 03 = 1, RnC) + AE"R(RnC) — ER(toas, v3=0,RnC)]. (1)

The tensor part (second bracket) gives the position of the “rovibrational” transitions
(RnC) of a cluster, relatively to the hyperfine structure. Figure 2 shows an example

of such a structure, with the computed spectrum (as described in Subsect. I1.B.3); the
vertical bars indicate the nositions of the “rovibrational” freauencies, The corresnond-

CIULal UAQls MGG VIS PUSIUOLs O S viliqailiolial L UALIts, A0 LONICSPRUIIL

ing absolute frequencies, which we use as data in the present paper, are deduced from
the positions of these bars, with respect to the absolute frequency calibration of the
experimentai recording.

2. Background on the intensity theory in saturation spectroscopy and application to
the v; band of SF. The fit of the hyperfine structures and the deconvolution procedure

3 These three operators belong to a wider class of operators suggested by Michelot in her general theory
of higher order hyperfine effects in spherical tops (33).



THE »; BAND OF *2SF 101

imply a detailed theoretical knowledge of the intensities of individual hyperfine com-
ponents in saturation spectroscopy. Such a theory is still familiar only to experts in
this specific spectroscopic technique, and we feel that, at this point, a short review of
the main results of this intensity theory could be useful to the reader interested in the
connection with ordinary linear spectroscopy of fine structure spectra of spherical
tops. Indeed, in the limit of unresolved hyperfine structures, this theory gives an essential
insight into the relationship between usual selection rules and statistical weights, and
the true hyperfine content of rovibrational lines (including parity labels), and it illus-
trates a general principle of spectroscopic stability in nonlinear spectroscopy.

In linear spectroscopy, as illustrated by Fig. 3a, the absorption coefficient & is simply
given by a summation over M sublevels of a second-order density matrix diagram
(22):

1 83 8rvn,

k=

2 (bFyMylii- &*aF M) X (aF Mol - 8bFy My) fiv —vo)  (2)

4reg he 8a p, 0,

where fis a normalized lineshape (e.g., (1/VrAvp)exp[—(» — vo)?/Avd] in the Doppler
limit), % is the electric dipole moment operator, € is the polarization unit vector of
the electric field, and (n,/g,) is the population of each M sublevel of the lower
state |aF,).

The application of the Wigner-Eckart theorem is then followed by the evaluation
of the sum of squared 3 — j symbols, which gives the familiar one-third factor:

2 (bFyMyli-&*aF My aF, M- &bFyMyy= 3 [(bFyMylii-&*aF ,M,)I*
Mg.Mp My, My
2

K, 1 F, 1
= bR lu®laF)R 3 ( ):—| bEIWVNaFHE. ()
Finally, the absorption coefficient is
47% n,
k=Ta“‘Vf(V—vO)[|<beH wOlaF, )yl /e (4)

where a cross section has been displayed together with the introduction of the fine
structure constant o.
For the evaluation of the population®* in the case of SFs, we have
Na _

8a ZVZR

exp(—E,/kgT) (5)

(see, for example, Appendix II of Ref. (1)).

The reduced matrix element can be calculated using the double Racah algebra,
associated with Judd’s double tensors formalism and the chain of groups “O(3)
X #0(3) D PO(3) X 0y (23). With the notations of Ref. (11) for the hyperfine state

* In this formula, Z, and Zj are, respectively, the vibrational and rotational partition functions (taking
spin degeneracy and the Pauli principle into account): Zy = [1,6 [1 — exp(—hv;/ksT)]™%, where d; is the
degeneracy of the vibrational mode »;; and Zg ~ (8%'?/3)a7??exp(as/4) with ay = Byhc/ksT. The Boltzmann
factor of the lower state is exp{—E,/ksT) = exp[—azJ(J + 1)], and we have N = 3.2958 X 10?* molecules/
m? for | Torr of perfect gas, at the temperature of 293 K.
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FIG. 3. Density matrix diagrams (22) corresponding to (a) linear absorption and (b) saturated absorption.
These diagrams have complex conjugate analogs. There are also corresponding diagrams starting with the
upper state population, which contribute proportionally to n,/g, with a negative sign, and which have been
neglected for the sake of simplicity in the present paper.

vectors and those of Griffith (57) for V and X symbols, we can write the Wigner-
Eckart theorem for the electric dipole moment as

(U I)F, Mp; (UL, )R\NCRCs) a3 03, a9 L) F o M

o ol Fo)\ (A A A

Tl RN CRCs) A5 vh, 0y = (— 1) A £
(TR RS)A23>()'(_MFqM,F) ) , )
T Iy Ful [Ay A Aig

XBQF+ DEF + DI (i)l 42ll42]) ? 1 05 1 ¢X] Cr Cs Az,
J. Iy F| [Cr Cs Ay

X ([Cs)RI + 1)) o116 — DRGS0 ol QR+ DR + 1] /2

J. I, Ry
X4 1, 1y O ${J T AD T, TN (Ogs 3 031a5 % 103 13 05 )p300a (6)
J, I, R,

where the dipole moment operator in the rotating frame has been reduced to the first
term of its expansion in dimensionless normal coordinates’:

. T
WO = g P with =t (7
aq3a
The expression of the isoscalar coeflicient is
Kty = (— 18 rbndcocidand [Crl/(2R + 1) (8)

5 In their study of v, of SFg, Person and Krohn (24) found that an additional term was needed to correctly
reproduce the intensities of the observed lines. Such a term may also be introduced for »;. In fact, this is
only a particular application of the general expansion of the dipole moment operator. For spherical tops, a
general development in tensor form (similar to that of the Hamiltonian) was first introduced by Pascaud
(25), and then generalized and successfully applied to several problems by Loéte (26).
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and the reduced matrix elements of D"«'¥ and ¢3*"'" are, respectively, given by
I AD T Ty = (= )3T+ 1)+ 1], 9)
(0g31,= 05303 = 0] q5* 053 1 = 1,505 = 1) = —(3/2)"2 (10)

so that 3 is related to the vibrational transition moment uo,; introduced by Fox (27)
and Fox and Person (28) by
13 = V2o, (11)

with uo; = 0.437 + 0.005 D, according to Ref. (29) (1 D = 107'® esu. cm = 0.333564
X 107% C.m).

The final result for the dipole moment matrix element is therefore (without explic-
iting all the quantum numbers which are to be taken from Eq. (6))

(@)= 49i(g.n.)

:(—1)F-MF( Fo L Fo

JOF D
X[Q2F+ DQRF + 1)) —=
BV R | |

F J 1V
X2+ DX (=DM X 818 caced s DAz Cry Cs)OrrO 1RO Smndrn (12)

where all the selection rules appear explicitly as § symbols.

If any of the quantum numbers (q.n.) loses its significance to label eigenstates of
the Hamiltonian (because of mixing through any off-diagonal interaction, e.g., the
hyperfine Hamiltonian), new reduced matrix elements will be obtained with the coef-
ficients a™ and a” of the transformation matrices corresponding, respectively, to the
upper and lower energy eigenstates:

: : Fo3=1)* mF,v3=0)
<l”u(l)”.]> = z a:'(,CIljz‘ . OI},C]'?. .
Cl+ -

X{JDF' JIRCRCs- « +;v3 = 1| p«%4|| (JI)F, JI - - - 03=0). (13)

If the [a] matrices are almost identical in both states and if the reduced matrix elements
have no or little dependence with C, I, - - (e.g., for superhyperfine structures), then,
owing to the orthogonality of the coefficients, new selection rules §;; will result from
the selection rules dc,c, 01+ * - before diagonalization.

In the low field limit of saturation spectroscopy (which corresponds to the experi-
mental situation for ultrahigh resolution), observed signals are described by fourth-
order density matrix diagrams (four-wave mixing), as shown on Fig. 3b. This means
that any such process requires a quadruple product of matrix elements of the electric
dipole moment operator, and hence four successive applications of the Wigner-Eckart
theorem, followed by a summation over all M sublevel possibilities. The corresponding
calculation can be found in Ref. (30) for each type of resonance (main two-level recoil
peaks, crossover resonances, hyperfine coherence-induced saturation resonances). The
sums of products of 3 — j symbols are given by

N k 1 1\/k 1 1
Aggprar = (=)t 50 (1) (2k+1)( _ _)( )
% k=0,1,2 0 -¢ g /\0 —¢" ¢

kK 1 1)k 1 1
X (14)
F, Fs Fy||Fo Fs; Fy



104 BOBIN ET AL.

where (a88'a’) = (abb’a’) or (baa’b’), according to the notations of Fig. 3. This result
is also a direct application of the Wigner-Eckart theorem in Liouville space (22). With
the usual configuration of our spectrometer, we have g = ¢~ = 1 (retroreflected
circularly polarized light).

As an example, these angular factors A are given by the following expressions for
the main recoil peaks:

12F? -2 for AF=+1
15QF— 1)2FQF+1) =
Agppa= Apaar = (15)
2FF+1)+1 o AR-0
15QF + DF(F+1)

with F = sup(F,, F3). For crossover resonances similar formulae will be found in
Ref. (30).

Besides this 4 factor, the intensity of each line will be proportional also to the level
population (n,/g,), as in the linear absorption case, and, this time, to the product of
four (instead of two) reduced matrix elements corresponding to the relevant diagram.

It is to be noted that, in the limit of vanishing hyperfine structures, and for a given
value of I, the sum over all hyperfine intensities results in a formula identical to Eq.
(14) but with J replacing F, and with the nuclear spin degeneracy (27 + 1) as a mul-
tiplicative factor, as demonstrated in Ref. (30). Then, for a given vibration-rotation
line, the sum over possible values of I runs only over the values allowed by the Pauli
principle 8(A4,,, Cr, Cs), and leads to the following statistical weights (31, 32) gs(Cr)
= 2,1+ 1)

symmetry CR: Alg Alu A2g A2u Eg Eu Flg Flu FZg F2u
valuesof. 0 O — 1,3 — 1,2 1 1 0,2 —
weight gg(Cgr): 1 1 0 10 0 8 3 3 6 0

Note that our present results are consistent with those of Cantrell and Galbraith
(59), but that we use a different theoretical approach.

In this limit, the intensity of a vibration-rotation line defined by the transition
J, = J, C) is proportional to

ZoZ) e Tt Ve (O AappdI) + Abaatd DIOT |l al )1 (16)
R
where J = sup(J,, J,) and with

Kbl adapl* = (27, + 1)us; . (17)

For our spectra, the relative intensities of distant vibration—rotation lines are usually
only indicative, since the laser intensity, which also comes as a multiplicative factor,
is not kept to a constant level throughout the laser output profile, and drops down
quickly near the mode profile edges.

3. Synthetic spectra and derivation of vibration—rotation frequencies. Once we have
the frequencies and intensities of all transitions between hyperfine substates, as de-
scribed in the preceding subsections, we can draw synthetic spectra on a computer
plotter, through a convolution with a Lorentzian lineshape (see Fig. 2 as an example).
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The width of the lineshape is adjusted for each recording. Once a synthetic spectrum
1s drawn and satisfactorilv reproduces the observed spectrum, one can retrieve the

QI SQUISIaARIALY IVPIDVCRRAS LIS LB VRS

absolute frequencies of all transitions from the absolute frequency measurement of
the observed contour, and, in particular, the vibration-rotation frequencies (which
are marked with vertical bars as on Fig. 2).

To do so, we superimpose the observed and calculated contours, both drawn at the
same scale. Given a digitally recorded contour, one could think of a better procedure
than a mere superposition of two drawings; however, it has not yet been possible to
do better for the present set of data since:

(i) the 1982 recordings were not in digital form,

(ii) the 1984 spectra are digitalized on a HP desk-top computer which is not
linked with the CDC computer of theoretical contours,

(iii) the number of hyperfine components (main lines and crossovers) contributing
to each observed feature is far too large (up to 120 in our study) to ensure a unique
least-squares solution; however, for some specific structures with well-isolated lines,
we have succeeded in using such a least-squares procedure both to reproduce the
spectrum and to retrieve the hyperfine constants.

o rathan arcmalanconian smennandiiea AF crttanetmamncitinm nnsetainly TmAaracona

Tlllb rauici CUmocrsoinc pruLcuuiv vl a‘upcxuupumuuu Loitallily luvicascd LhC ULI'
certainty of the final vibration-rotation data, by introducing additive sources of errors:
(i) superimposing the two contours and measuring the position of the bars mark-
ing the frequencies are limited, anyway, by the thickness of the pencil line;
(ii) the fit of the hyperfine structure is not always perfect, which leads to some
additional freedom;
(iil) the rovibrational terms included in the Hamiltonian are limited to the fourth
order in our model, and work as effective terms. Using a more sophisticated rovibra-

AAAAAAAAAAAAA PR PR e S e R PR, b Py
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the hyperfine parameters, which, in turn, will slightly change the positions of the
derived rovibrational data. So we should consider that we have only done the first
round of an iterative procedure.

We can, however, estimate that the errors due to these considerations do not exceed
1 kHz, which is small considering the fact that without a deconvolution it would have
been impossible to locate the rovibrational line centers to better than 20 kHz. A
particularly striking example is the ((52) 4,(2) line, whose two components A4,, and
Ay, show a spiitting of 30 kHz: only a precise study of the hyperfine structure enables
us to say that the rovibrational transition should be located exactly on top of the 4,,

component!

III. THE VIBRATION-ROTATION HAMILTONIAN AND THE NUMERICAL ANALYSIS

In the case of triply degenerate vibrational levels of spherical tops (in their ground
electronic state), the Hamiltonian developed by Moret-Bailly (34) is now recognized
as an especially powerful tool, and has been widely used with great success during the
last 20 years. We shall not give here a complete demonstration of its general features,
but we think it may be useful to recall the bases of the theory, to give adequate
formulae for the present probiem, and to briefly describe the numerical procedure

which is used to analyze such a vibrational band.
First, let us specify that what we are going to write is adapted to A4;- and F-type

D538, 0% RS SPRLALy 21al WiIlAl Wo &I gl 2
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vibrational levels of XY, molecules, the symmetry group of which is 7}, but that most
results are immediately applicable to 4,, and F,, levels of XY, octahedral molecules
(symmetry group O,), as we shall explain at the end of Section IIL.B.

III.A. The Tensor Vibration-Rotation Hamiltonian in O(3)

Using group theory and irreducible tensors algebra, Moret-Bailly (34) has shown
that it was possible to write an a priori Hamiltonian operator for spherical tops with
irreducible tensors of the full rotation group O(3), except when the »,(F) vibrational
mode is excited (this restriction was later removed by Michelot (35)). This Hamiltonian
is then a linear combination of tensors of O(3):

H= zko‘") (18)

where "OZ‘,) results from the coupling between a rotational tensor (related to the rigid
rotator) and vibrational ones (related to the four normal modes of XY, tetrahedral
molecules). Since H must be invariant in any operation of the T group, that is must
be of symmetry A,, the total tensorial rank » may take the values

n=0g,4,6,8¢" * -

as shown by the reduction in T of the representation D of O(3). Each rotational
or vibrational term itself results from the coupling of several elementary operators.

Basis functions are also built in tensor form, using a similar procedure, and the
same coupling scheme. The great advantage of this formalism is that the Hamiltonian
is, by construction, diagonal with respect to the vibrational quantum numbers v;, the
total angular quantum number J, and a symmetry label C, which represents one of
the five irreducible representations of T, (4,, 42, E, F,, and F,). Then, for a given
vibrational level (given v,), and a given J, the Hamiltonian matrix is reduced in block-
diagonal form (each block is specified by the label C), and the diagonalization then
takes place in these blocks of rather small dimension (for instance the largest matrix
we dealt with in the present analysis was of dimension 75 X 75, for J = 95 and
C=F 2).

The calculation of the matrix elements of H requires the introduction of 3n — j
recoupling symbols and, via the Wigner-Eckart theorem, of the F symbols adapted to
the cubic symmetry (and known as Moret-Bailly’s F symbols).

After diagonalization (and in the limit where the mixing of states is not important),
each eigenvalue, that is each rovibrational level, is then labeled by four quantum
numbers (in addition to the vibrational ones):

(1) the total angular quantum number J,

(2) the rotatlonal quantum number R, related to the “pure” rotational momen-
tum R = J — 1, where I is the vibrational angular momentum,

(3) the symmetry C of the level (with respect to T}),

(4) and a multiplicity index n, appearing when several levels have the same sym-
metry C, for given J and R, that is when the representation D®® of O(3) contains C
several times in its reduction in T,. Note that all works following Moret-Bailly’s no-
tations have # starting from zero, and use a condensed index p = (C, n).

The tensor Hamiltonian may be developed to any order of approximation, defined
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by the order of magnitude of the last contribution to the energy. The original work

{34\
(34) gave a development to fourth order; it was then extended to the sixth order by

Michelot et al. (36), from which we take the present notations.
When the development is performed to the required order, it appears that many
operators have proportional matrix elements and can be recast. The effective Ham-

iltonian, for the given vibrational state, is then a linear combination of independent
nnerﬂfnrc

H=ZCka (19)
k

where the H, operators are adapted to the symmetry of the molecule, whereas the
numerical parameters ¢; depend on its physical nature. The analytical problem is thus

to derive the values of these “effective molecular constants” ¢, from the experimental
measurements of transition frequencies.

II1.B. The Fifth-Order Expansion of the Hamiltonian

In previous works on spherical tops using the present formalism, the development
of the Hamiltonian to third or fourth order was generally sufficient to give numerical
results in excellent agreement with the experimental accuracy. In the case of heavy
molecules, at very high resolution, an expansion to a higher order is necessary, especially
when very-high-resolution techniques are used to measure frequencies, such as saturated
absorption spectroscopy. In the present analysis, we decided to retain a fifth-order
expansion, taking into account the very high accuracy of the data but also their rather
small number. We shall see that this choice has been completely justified a posteriori.

So, to the fifth order of approximation, the matrix elements of the Hamiltonian for
the excited F, vibrational state (v3 or v, in the single-level approach) are given by the
following formula, where the quantum numbers are written in short {(q.n.)| = {J;
v;=1, = 3= 1; R, p|

{qn)Hlg.n.) ) =[a+BJJ+ N+ yJHJ+ 1Y + =3I+ 1)))A(R, p)
+3V2IN 4 xJJ+ D) +as T3+ DH{101}2R + 1)2f(J,0, 2)A(R, p)
+5V6[5 +yJ(J + 1)]{202}(2R +1)2(J, 1, 3)AR, p) + {3V3[e+ pJ(J + 1)]{044}

XA, 3,5)+5V21 oJ(J+ DJ{242} AU, 1,3+ 3V42[u — bs J(J+ 1)]{143}

Xf(J,2,4)+ 15V231/2T{244}f(J 3,5)+(3V33/2V10)cs{ 145} f(J, 4,6)}

X [2R+ 1)2R + D= 1)RGYRFS 5D 1 (V39£{066} f(J, 5,7) + V858n{264 )}
XfJ,5,7)— (V143/2)ds{ 165} f{J, 4, 6)}[(2R + DR + D]~ 1RHREFEED  (20)

For simplicity we have set the following condensed notations:

1 if R =R and p'=p
A(R,p)= [

0 otherwise

ST, mn)=[Q_J—m)2J—m+1)- - -(2J+ n)]'"?
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and the 9 — j symbol

a b ¢
{abc}=41 R J;.
1 R J

The Fff,f,'f), with n = 4 and 6, were first computed by Moret-Bailly et al. (37) for
low J’s, then up to very-high-J values by Krohn (38). Let us recall that the F**) symbols
are diagonal in p when they are diagonal in R, but this is not the case for the F® ones,
and that both symbols are pure imaginary numbers when (R' — R) is odd (which
explains the phase factor (/)% used to make the Hamiltonian matrix real).

Similarly, in the ground state (v, = 0, all s) the Hamiltonian is not completely

diagonal with respect to the chosen basis, and its matrix elements are

(Jo3v5=0;Jo, polH|Jp; v,=0; Jo, o)
= [BoJolJo+ 1)+ Y0 3o+ 1+ moJ3 o+ 1))]A(o, o)
+ [0+ podolJo + D10, 3, SY—1YFL 20 + £ fldo, 5, TH—1YFS 20 (21)

using the same notations as above.

Up to the fifth order of approximation, we thus have 20 molecular constants to
describe the excited (v; = 1) state, and 6 for the ground state. Some of these constants
are directly related to physical parameters. For instance:

(1) « is the vibrational energy,

(2) Band v (resp., B and ) are the inertial and the scalar centrifugal distortion
constants in the excited (resp., ground) state,

(3) A is connected with the Coriolis coupling coefficient {; by

A=—B. (22)

For most constants occurring in low-order terms of the Hamiltonian, relationships
can be established with the parameters used in other formalisms. For example, we
give in Table I the connection with the usual notations of Hecht (39); more detail can
be found in Ref. (40).

Given a set of adequate molecular constants, the numerical diagonalization of the
Hamiltonian matrices (both in the ground and excited states) is performed, leading
to eigenvalues which are the rovibrational energies in both states. Thus the frequencies
of the allowed transitions are simply obtained by subtractions, according to the selection
rules. In the usual case where internal mixing is not too important, the selection rules
given by the general formula (12) are

(a) AC=0

(b) AJ=J—Jy=—1,0, +1, giving rise, respectively, to the P, O, and R branches,
(c) AR=R—Jy=0

(d) An=n-—ny=0.

Yet, it must be kept in mind that the last two rules are not strict and that, in many
cases, “forbidden” lines do appear (which may bring valuable information, as will be
specified later).

Since a triply degenerate F, level (v; = 1) is characterized by the vibrational angular
quantum number /; = 1, we have then R = J, J £ 1, and, as a consequence of the
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TABLE I

Effective Molecular Constants for the Ground and (vy = 1) States of *2SF;,
up to the Fifth Order of Approximation

Molecular constant Numerical value (standard deviation)
Ord.  J.M.B. K.T.H. in MHz inom™! e
S0 BO RO 2.730635620("1)/10} 9.10842001(10))(10—2
52 v, o S1.663080137  v107% Ss.sa743(43)  x1077
s4 n -3.2186(13) 077 Ctlo7362043) <107
12 g, -W3/2/7n, 1.86383(63)  ~107° 62171210 w107
T4 0y WA, 9.9206(91) a0 30930y«
14 g, ~UA&ZM,  -1.757010) 210717 L5 .860(33) w1077
50 a N 28.423398592(12)x10°  948.10252337(40)
52* 0B=B.-B, BB, -3.928945(211 S1.3105551(70) x107>
Suv dy=ysy, (DD ~1.263014) 107 Za147(08) T
55% An=mym -6.23(25) ao”" 2.077079) <o ?
51 A -8, 21.89081685(51) <1077 -6.3070861(17) <1072
52 8 -7 2.290804(25) <107 -7.641299(85) <1076
53 y (1/2>r; 4.7899(56) o™ 1.s977019) <078
56 " -1.7942(76) 1077 25.985(25) <1072
55 a 1.7321(85) 1078 5778029 1071°
14r bezese  -0/3/2/7)8D, -9.774(65) 078 32600220 0712
2 P 03N, S7.366390100 107 -2.457163(35) 107>
13 u <VG/2¢7>Ft -2.516(321 <107%  _g.39011) g™V
4 o S1.752045) 077 s.84015) <0712
T4 T 0.0 + 0.0 +
1% Bp=py-p_ -5.7014) 2077 21.90149) g™’
i b, 3.676(94) 0719 1226032 «1071%
" o 0.0 + 0.0 +
1% AE=E L -1.141(32) 07" 3gin) <™V
14 1.446(33) ap712 4.82011) <107V
15 d 4.053110) 0710 3s19034) ap™ M

Note. We give the notation of Moret-Bailly (J.M.B.) used in this paper and, whenever possible, the cor-
respondence with Hecht’s formalism (K.T.H.), together with the indication of the nature (S = scalar,
T = tensor) and order of magnitude of the first operator connected with the constant. All standard deviations
within parentheses (99% confidence intervals) are in units of the last quoted digit.

* See footnote 7.

** Given ¢ = 299 792 458 m/sec.

T Fixed to zero (see text).

above selection rules, each fine level of the excited state may be reached by one and
only one “allowed” transition from the ground state. This explains why each fine
structure of the spectrum reproduces exactly the structure of the related group of
energy levels. These structures are very characteristic of spherical tops and are called
“tetrahedral” fine structures.

Now, to close this subsection, we have to be a little more explicit about the application
of the present formalism to the case of XY molecules:

The symmetry group of XY, octahedral molecules is O, which has 10 irreducible
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representations (their notations are obtained from those of T; by adding the parity
index u or g). Among the six normal modes of vibration, only v; and v, are (strictly
speaking) infrared active, because they are of symmetry Fy,. The ground vibrational
state is of symmetry 4,,.

It is well known, and has been clearly established by Michelot (35), that

(i) in a given vibrational state, two eigenfunctions which differ only by the parity
index (u or g) lead to the same rovibrational energy (this degeneracy is removed only
by the hyperfine interactions);

(ii) these energies can be obtained from a rovibrational Hamiltonian which is
formally identical to the one used for XY, tetrahedral molecules, given a simple cor-
respondence between vibrational symmetry labels, for example: F;(O;) = Fx(T,),
and A,,(Oy) = A(Ty).

So, from the rovibrational point of view (disconnected from the hyperfine problem),
we can use for a Fy, (resp., 4,,) vibrational level of XY, spherical tops the same
formalism and formulae as for a F, (resp., 4;) vibrational level of XY, molecules. Yet,
we must keep in mind that, in this case, a given rovibrational symmetry label C covers
two degenerate states C, and C,,, except for rovibrational labels 4, , E, and F, (because
Ay, E,, and F,, are strictly forbidden by the Pauli principle).

As a consequence, the “effective” spin statistical weights gs(C) we have to consider
in the rovibrational problem for SFg (or any XYy octahedral top with nuclear spins
iy =0 and iy = 1) take the following values:

symmetry: A A, E F, F,
g(C) 1+1=2 10+0=10 &8+0=8 3+3=6 6+0=6

These values are to be used for the calculation of the intensities of rovibrational
transitions, according to the general theory described in Subsection I1.B.2.

II.C. The Use of Spectroscopic “Band Parameters”

For a long time, the lack of powerful computational tools, and also the comparative
mediocrity of experimental accuracy, have led to the use of approximate perturbation
methods in the determination of energy levels of spherical tops. The Hamiltonian of
Moret-Bailly is especially well adapted to this purpose because, in the case of F, (or
F,,) vibrational states, it is almost diagonal. So, it is possible to get a rough estimate
of the eigenvalues simply by keeping the diagonal matrix elements. Though this method
has not been used in the present paper, we feel it is interesting to recall here its main
features, essentially with the purpose of showing the limits of such an approximate
procedure.

Using the general matrix elements of Egs. (20) and (21) and the selection rules, the
diagonal contribution to the transition frequencies can be written in the form intro-
duced by Bobin and Fox (41); for the P and R branches we have

frr(R,p) = m+nX +pX?+gX?+ sX*+ tX° + xX°

(—I)R (6 RR)

—1)R
+[g+hX+kX2+lX3+jX4]uFf:|1;§)+[Z,+Z”X+ZWX2];1'—(,?)_ A1pp

AX)
where X = R + 1 and X = —R for the R and P branches, respectively.

(23)
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For the Q branch we have

fkR,p)=m+vR(R+ 1)+ wRHR+ 1)’ + xRX(R+ 1)’ —[2g— uR(R + 1)
1 R
—zRZ(R+1)2l( ), Fie i 0 22/~ ”’R(R+1)]( D FGR0 . (24)
B{R) 7° B(R)y ™

In these expressions, which are valid up to the fifth order of approximation, we

AX)=2X2X + 1)/[(—1)X(2X—5)- < (2X+ 3))12
AX)=2XQ2X+ 1D/I( QX-T7)--QX+5)]"

B(X)=2XQ2X+2)/[2X—3)+ - - 2X+5)]"

B'(X)=2XQ2X+2)/[2X—5) - -2X+ )"

The numerical parameters m, n, p, . . ., are linear combinations of the molecular

alatad tha -
constants related to the ground and the exc1'ed states: we call them spectroscopic

“band parameters.” Their appropriate expressions, up to the fifth order of approxi-
mation, are given in Table II. We must point out that this “order of approximation”
is defined with respect to the order of expansion of the Hamiltonian, and is related to
the order of magnitude of the last contribution to the rovibrational energy. There is
generally no simple connection between the order of approximation and the degree

TABLE II

Spectroscopic Band Parameters for vy of 3SFg, Calculated from Their Expressions in Terms of the
Molecular Constants (Last Column), and Using the Numerical Values of Table 1

Param. value (s.d.) in cm_1 Combination of constants
m 947.97633577(43) a+2X+68
n 5.5819241(38)x1070 B4R _+2A+108+2x+60
p -1.615569(11) x1D-a B‘BO+Y-YO*“5*“X*‘5W+23s
q 9.602(40) '».‘10_9 2y+2y_+1+m_+2x+T4P+6a,
s -6.195(60) ><10_11 Y—YO+3ﬂ—3ﬂO+AW+6aS
t 5.051(62) %1070 3me3n_s2ag
x 207079 07" e
v -6.9893200(61)x107° BB, -B8+2x+6Y
W 7.56(28) y10_12 Y—YD—BX+285
q -2.456978(34) X107 ¢+20e-8,,-1007+30c,
h S1.2660034) <1077 ~1Bew2e_~200+4u-0+90T-2b 37,
i S1.8720240 <1071 380420 +he-be +0-20T43b,+15¢,
1 9.126(5N) T 22p+2p +bo+hc
=z 7.601.9 077 apso
u S1.54(21) 0717 de-be ~40p-20+40T-8b+10c,
2’ 3.656016)  x707'% 42E4nsdd,
2 1.1122070) =107 1% 266-2€_+d,
2 -1.523043) %107 4g-4g
Note. The parameters j and z are equal at the fifth order of approximation. All values and derived standard
deviations are in cm™'. Please refer to the text (Sect. II1.C) for a correct use of these parameters
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in J (or R) of the polynomials occurring in Egs. (23) and (24). For instance the main
rotational operator (related to the rigid rotator) appears in the zeroth-order Hamil-
tonian, but gives a contribution to the energy proportional to J(J + 1), and then
contributes to the parameters n and p (or v in the Q branch).

In this diagonal approximation, the terms involving the F® being generally small,
it is obvious that the positions of the lines within an R manifold are proportional to
the F symbols. The usual assignment method follows directly from this remarkable
property (as far as fine structures do not overlap too much). Approximate values of
the band parameters can then be deduced from the frequencies of the transitions,
using for instance a least-squares calculation. A refinement is obtained by introducing
corrections to the diagonal terms, usually by a first- or second-order perturbation
method (or, sometimes, more sophisticated procedures). Yet, and this is the most
important point we want to emphasize, the expressions of off-diagonal corrections
that can be calculated (34, 4/) involve new linear combinations of molecular constants;
these “off-diagonal parameters” cannot be connected simply to the parameters g,
h, . ... So, only approximate expressions of the off-diagonal corrections can be written
in terms of the diagonal parameters (the only ones that can be deduced from the
calculation). With the expressions given in Refs. (34, 41), the corrections are valid
only up to the third order of approximation.®

So, it appears that, finally, such an approximate procedure is valid only up to the
third order of approximation, and that it would be inconsistent to try to determine
more than the seven parameters appearing up to this order, namely m, n, p, q, v, g,
and A (any other higher order parameter numerically derived from the analysis of the
spectrum would not keep its true physical significance). Let us add that, as it is well
known by people using this procedure, it is impossible to derive significant values of
all the molecular constants from the band parameters only (even if the constants of
the ground state are known).

Nevertheless, to moderate somehow the severe criticism that we seem to bring not
against the method, but against the often use of this method, we must say that this
approximate procedure can be extremely useful in starting the analysis of a band,
especially with low-resolution spectra, and also in extrapolating the calculations to
very-high-J values (when the dimensions of the true Hamiltonian matrices become
too large to reasonably proceed by exact diagonalization).

The reader has probably already understood that if we want to treat the problem
properly, it is necessary to come back to the exact expression of the rovibrational
Hamiltonian, Egs. (20) and (21), and to use a more adequate numerical procedure,
especially if we want to reach the accuracy of saturation spectra.

II1.D. Determination of the Molecular Constants

In previous analyses of the v3 band of SF (42-45, 7) approximate numerical methods
were generally used, more or less similar to the one described in the preceding sub-

6 We thank Krohn (60) for having drawn our attention to an error in the expression of the (J, J + 1) off-
diagonal term given by Moret-Bailly, Eq. (204) of (34) or Eq. (13) of (61). This term should read: [(¢ + 12¢
— 6u) — J(8¢ — 2u)] instead of [(¢ — 12¢ + 6u) + J(8¢ — 2u)], so that the off-diagonal terms can all be
expressed in terms of diagonal band parameters up to the third order of approximation. The reader will also
find new interesting expressions of the line frequencies in a first- or second-order perturbation approximation
in the papers by Krohn and Watson (62).
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section. The final standard deviation on the fitted lines was always much larger (by
one or two orders of magnitude) than the experimental accuracy. So we decided to
completely reconsider the problem, in order to reach an accuracy of the theoretical
model close to the accuracy of the saturated absorption measurements. First, it is
necessary to come back to the complete expansion of the vibration-rotation Hamil-
tonian, developed to the fifth order of approximation in the present case.
According to Egs. (19)-(21), this Hamiltonian can be written, respectively, in the

ground and excited states as

Ho= 2 cosHox (25)

k

and

H; = 2 c3Hjy (26)

were the ¢, and ¢y are the molecular constants of the two levels, to be determined.
The matrix elements of the Hy, and H;; operators are calculated once and for all, and
stored on a magnetic tape, for all needed values of J; and J. For example, they are
directly put into (J, C) blocks for the »; level (up to J = 95 in the present analysis).

From these matrix elements and for a given set of molecular constants, a second
computer program builds the Hamiltonian matrices of the excited (v; = 1) state (by
blocks (J, C)) and of the related ground states (the three blocks (Jo = J, J+ 1; C)). A
full diagonalization of both the excited and the ground state matrices is performed,
leading to the eigenvalues and the eigenvectors. The frequencies of allowed transitions
are then calculated by differences corresponding to the selection rules (and, if required,
of all possible “forbidden” transitions), together with their intensities at a given tem-
perature.

These computed frequencies have to be compared to the experimental ones, in
order to derive corrections to the initial set of molecular constants. This is achieved
using a linearization of the problem and a least-squares technique:

Let T be the matrix of eigenvectors which diagonalize the Hamiltonian matrix H

(either Hy or H;). Then the transformed matrix E:
E=T 'HT 27

is diagonal, and its nonzero elements are the energies of the related state. Using Eq.
(25) and introducing transformed operators Hy, , we can write the following equations:

E,=Ty [7 anan]Tn = y an[Tn Hy: Tyl

k k

= > coHok (28)
K

for the ground state, and similar equations for the »; state. Then the ith eigenvalue,
in this siate, can be estimated as the iinear combination:

Eoi= 2 col[Hokl: (29)

and the frequency of the transition from this ground state level to the jth level of the
vy state is
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vi=E3j— Eoi= 2 c3[Hy F— 2 cor Hor . (30)
; %

If vops is the observed frequency for this transition, then the difference v; — vops is 2
linear combination of the corrections dco, and dcs; to apply to the initial set of molecular
constants, in order to get a better agreement between the observed and computed
values. As far as the number of experimental data is at least equal to (and in practice
much larger than) the number of molecular constants, these corrections can be derived,
together with their standard deviations (confidence intervals), using the well-known
least-squares method.

This procedure can be repeated as many times as required. In practice it is stopped
when all the corrections on the molecular constants become smaller than half the
corresponding standard deviations. The standard value of the deviations between
computed and observed frequencies has, in the same time, become minimal (its possible
fluctuations are no longer significant). Note also that it is always possible, during the
iterative procedure, to fix any molecular constant to a given value (or, in more refined
programs, to tie it down to a given variation interval). Besides, the program takes care
of the case where a difference (observed — computed) in frequencies appears to be
abnormally large (with respect to the standard deviation of the fit): an adjustable test
will eliminate the corresponding line from the computation.

From this brief description of the numerical procedure, it appears that it would be
possible to determine all the molecular constants which are involved in the Hamiltonian
expansion. The reality is of course slightly different, because some operators which
occur both for the ground and for the excited states happen to have equal matrix
elements in the two states, for J, = R; these scalar operators are related to the constants
noted 8, v, and =. Because of this property and of the selection rule AR = R — J,
= 0, the frequencies of allowed transitions depend exactly in the same manner of the
molecular constants in both states, and more precisely of their differences only, for
example, 85 — (3, for the main rotational operator. This is the reason why it is generally
said that it is impossible to fit simultaneously the ground and the excited states only
from the frequencies of “allowed” transitions of a fundamental band. This difficulty
would be removed by the observation of “forbidden” lines, that is with AR # 0 and
An # 0. Unfortunately, in the case of v; of SFg, the intensities of such transitions are
so weak that it is extremely difficult to detect them.

Yet, there is a way to get around this difficulty. Let us consider, for example, the
main rotational operator, which gives the energy contributions 8;J(J + 1) and 8oJy(Jo
+ 1) in the excited and ground states, respectively. From the Hamiltonian construction,
we know that the difference AS = 8; — (3 is small compared to 8,. Then, rather than
introducing the operators related to 8; and 8y, we can introduce one with 8, in both
states and one with AB in the (v; = 1) state. If the constant 8, is unknown, or simply
roughly estimated, we can fix to zero the “correction” AB in a first set of iterations,
and get a first (or better) evaluation of 3,. Then, in a second set of iterations, we fix
Bo to the value obtained, and can get a first estimation of A3, and so on, by successively
fixing B3, or its correction AS to the (v; = 1) state. This procedure can be simultaneously
applied to the three scalar constants 8, v, and . It converges after a rather small
number of sets of iterations, depending on the initial estimation of the constants, on
the relative values of the corrections in the excited state, and also on the accuracy of
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the experimental data. For SF¢, as will be seen in the next subsection, very accurate
values have been derived after onlv five sets of five to six iterations

aildls gy VSR AL BLLAVERS QLD VALY Ve S0ss UL W SN LIRS,

Now, concerning the tensor operators which occur both in the ground and excited
states, namely those related to the constants ¢, p, and £, there is no problem, in principle,
for the following reason: though the matrix elements of these operators are equai in
the ground and excited states (for given J, and R = J;), their exact contributions to
the transition frequencies are no longer equal after the bases change, Eqgs. (28)-(30),
simply because the T matrices are different in the two states. Yet, these operators
being generally almost diagonal (especially for heavy spherical tops), the difference

1 1 1 1 ihirant in tha nuimarinal samnntatian Aanly
between the two contributions will be significant, in the numerical computation, only

when experimental frequencies are measured with a very high accuracy. Then the
possibility to consider such constants as e; and ¢, (or p; and pg, or else 5 and &) as
linearly independent is highly dependent on the experimental precision. When this
opportunity is not given, we still have the possibility to use the same iterative procedure
as for the scalar constants 3, v, and «.

To close this section, let us recall that it has recently been proved by Tyuterev et
al. (46) that, when we restrict the general tensor Hamiltonian (whatever the formalism

ilarnt 1 a1 nA t A £ Anvwal
13) toa gi‘veﬁ vibrational Provicin \uefe U3 = l} anaioca gi'veﬂ Oracr O1 uﬁvﬁl(‘lpmeut

this leads to some ambiguity for the “effective” molecular constants which are nu-
merically derived; indeed the solution is not unique or, in other words, all involved
molecular constants are not necessarily linearly independent. In the case of Moret-
Bailly’s Hamiltonian, presently used, these authors have shown that there is a linear
relationship between the constants ¢ and 7, on one hand, and bs and c¢s, on the other
hand. Since there is (as far as we know) no logical reason to choose one rather than
the other, we decided for the present work to arbitrarily fix to zero the two constants
7 and ¢s {let us recall that this choice has no influence at all on the numerical fit of
the frequencies). Then, for the present problem, we shall retain 18 effective molec-
ular constants for the (v; = 1) vibrational state, together with the 6 ones of the
ground state.

We have applied the formalism and the numerical method described in Section III
to the 136 measured transitions of V3 of SF6, usmg, the 1f€Qu€ﬁCleS obtained after
deconvolution of the fine structures (except for the {1 lines where the N,O laser is
involved), as explained in Section II. First, let us mention that the rovibrational as-
signments of these lines were already known both from previous analyses and from

hyperfine studies, and have been confirmed as a whole.

IV.A. Effective Molecular Constants

In order to start the iterative procedure described in Subsection Ii1.D, a preliminary
estimate of the main molecular constants was needed. This was achieved by using the
last published values of the band parameters of Ref. (7), and also some experimental
or theoretical estimates of the ground state constants: 8, = By = 0.091084(2) cm™!
was given by Patterson et al. (47); ¢, may be deduced from the value of ty44 = —D,

= 5.7(0.7) Hz observed by Bordé et al (7, 21), which leads to ¢ = 1.86(23) Hz; and
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a theoretical estimate of yo = —D, = —6.36(7) X 10~° cm™! has been calculated by
Berger and Aboumajd (48).

The other ground state constants o, po, and &, were first estimated by setting to
zero their corrections (Ax, Ap, and Af) in the (v; = 1) state. Then, as described in
Subsection II1.D, it was possible, with the help of the very high accuracy of the measured
frequencies (5 kHz), to have a direct estimate of all tensorial constants, both in the
ground and excited states. The scalar constants 3, g, and m, were also refined, together
with their “corrections” in the (v; = 1) state, using the procedure described in H1.D.

Finally, we got significant values for all constants involved in the fifth-order Ham-
iltonian expansion. They are presenied in Table I (in MHz and cm™!), together with
their standard deviations (99% confidence intervals, in units of the last quoted digit).
When possible we recall the corresponding notation of the constant in the usual Hecht’s
formalism. Besides, in order to facilitate the comparison with other studies, we also
indicate the nature (scalar or tensorial) of the operator leading to the given constant,
together with the order in the Hamiltonian expansion where the first contribution to
the constant occurs.’

Some important spectroscopic parameters can be deduced from the present mo-
lecular constants. In particular the Coriolis coupling coefficient {; takes the value

$3=—NB3=0.69344341(20)

and a better evaluation of the S-F bond length in the ground state can be derived

from 8y, leading to
ro(S-F) = 1.5605(3) A.

Let us give a few remarks about these numerical results:

(a) All molecular constants have meaningful values, which justifies the use of a
fifth-order expansion for the Hamiltonian; yet the constants Ap and A (which are
indeed of the fifth order) are barely meaningful which means that higher order terms
(from a sixth-order expansion) would probably not bring any valuable improvement.

(b) The determination of accurate values of the ground state constants for heavy
sphernical tops, only from allowed transitions of a fundamental band, has always been
a tough problem. Though some results have been obtained for the main rotational
constant By for SF4 (63) or UF¢ (64), for example, the present analysis is, as far as we
know, the first attempt to evaluate all the molecular constants with very high accuracy.
Moreover, the values obtained are in good agreement with the theoretical or experi-
mental estimates which have been mentioned above.

{c) As will be detailed in the next subsection, these values are derived from a fit
including only 128 among the 136 available observed transitions (those with deviations
less than 100 kHz). But it is remarkable that such accurate values can be obtained
from about only one percent of all the allowed transitions in the studied spectral range
(11 520 up to J = 95). This can be explained both by the extreme accuracy of the
experimental frequencies, and by the use in the numerical fit of transitions from the
P, O, and R branches, with almost regularly spaced J values, from J = 2 to 95 (this
point resulting from a good sampling by successive laser lines).

7 It must be noted that, though 85 and 8, result from zeroth-order operators, their difference A8 comes
from second-order terms. Similarly, Ay and A« must be considered as fourth-order constants, whereas A,
Ap, and Af are of fifth order.
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In order to make the comparison with the most recently published analyses of this
band (45, 7), we give in Table II the values of the spectroscopic band parameters, Egs.
(23) and (24), that can be calculated from our molecular constants, together with the
adequate expressions of these parameters (up to the fifth order). This might be also of
some interest to anyone willing to extrapolate the present rovibrational analysis to
higher J values (in the diagonal approximation, as explained in Subsect. I11.C).

Let us add that, considering the standard deviations on the molecular constants,
the absolute values of vibration-rotation energies are computed with a mean precision
of 0.185 MHz in the ground state and 0.380 MHz in the (v; = 1) state, for J = 50,
and, respectively, around 2.35 and 5.45 MHz for J = 95 (of course the accuracy on
differences, that is, on the frequencies, is much better, as will be discussed below). A
complete listing of the rovibrational energy levels, both in the ground and the
(v; = 1) states, can be obtained upon request.

IV.B. The Fit of Saturated Absorption Frequencies

The comparison between our final computed frequencies, using the molecular con-
stants of Table I, and the measured frequencies (as defined in Sect. II) used as data,
is presented in Table II1. For each studied spectral range (each laser line) the observed
resonances of SFs are listed with the following data:

(1) the assignment of the SF¢ »; rovibrational transition (branch, J,, C, and ny),

(2) the final measured frequency (in MHz), after deconvolution of the fine struc-
ture from the hyperfine structures,

(3) the difference (observed — computed) in frequencies (in MHz).

The fit from which the molecular constants have been deduced includes only the
128 lines with deviations less than 0.100 MHz; the 8 remaining lines are indicated in
Table III by a special mark (<). The standard deviation® of this fit is

6,=0.028 MHz=0.93X10"%cm™"

which is close to the experimental accuracy, and represents a considerable improvement
with regard to previous analyses. If we include the remaining lines in the calculation
of o, (without changing the molecular constants), its value raises up to 0.314 MHz.
We could also try a new fit including all the 136 transitions and leading to somewhat
different molecular constants; the new standard deviation on frequencies would be
0.172 MHz. Yet, for the reasons that we explain below, we think that the set of
molecular constants given in Table I leads to more consistent and reliable results.

First, let us note that, except for the problem of lines outside the fit, the deviations
between observed and computed frequencies do not show significant fluctuations from
one laser line to another, even for the R(10) line of the N,O laser, which is good
evidence of the self-consistency of the measurements. Besides, these deviations show
no more dependence on the quantum number J, even for the highest values, which
confirms, once more, that the Hamiltonian expansion has been performed up to a
sufficient order of approximation.

8 Let us recall that the unweighted standard deviation o4 which is used here is defined as o4 = [E(Ven
— Vs /(N — p)]'2, where N is the number of involved data, and p the number of constants derived from
the fit (N — p is then the number of independent data). In our final numerical fit, we had N = 128 and
p =24
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TABLE HI

Comparison of Computed and Observed Frequencies for the 136 Transitions of v of 32SF,

Measured by Saturation Spectroscopy

Notes to the Table: Coincidences with P16 of 0, Coincidences with P14 of €O,
(a) These observed fr ies
are not corrected of hyperfine Q 55 F2( 6) 28412340.258 0.017 R 28 F1( 2) 28464417.830 0.014
effects (see the text). Q 55 F1( 6) 28412347.656 0,037 R 28 E ( 1) 28464506.923 0.034
{ <) Trangition outside the fit Q 46 P1( 3) 28412376.486 —-0.038 R 28 F2( 2) 28464529.560 0.035
{deviation larger than 0.10 MHz) Q 49 F1( 7) 28412382.721 0.040 R 28 A2( O) 28464691.306 0©.0l6
Q 47 F1( 7) 28412397.03% 0.014 R 28 F2( 1) 28464712.420 0.024
Q 49 E ( 4) 28412430.671 0,052 R 28 P1{ 1) 26464728.43¢ 0.029
Q 54 A2( 2} 28412442.814 -0.011 R 28 RY{ O) 28464741.935 0©0,03)
Q 54 F2( 7) 28B512452.980 0.010 R 29 P1( 2) 2B464858.047 —0.085
Q 54 E ( 4) 28912457.940 0.02)1 R 29 F2{ 1) 28464858.327 —0.085
Coincidences with P22 of CO, Q 41 F1( 9) 28412467.435 —-0.002
Q@ 41 E ( 5) 28412472.874 0.000 Coincidences with P12 of CO,
P 83 F1(13) 2B251749.116 0.483< Q 48 Fl( 4) 28412474.597 -0.013
P 82 Fz(10) 28251854.218 0,037 Q 21 F2( 8) 28412478.355 0.002 R 70 F2{( 7) 28515795.247 0.044
P B2 F1(10) 28251856,339 0.0149 Q 45 A2( 2) 28412526.411 -0.037 R 70 F1( 7) 2B515836.768 0.036
P 81 F1( B8) 28251999,598 -0.008 Q 53 F2( 6) 28412559.609 -0.014 R 72 E ( 6) 285156843,955 0.010
P 81 P2( 7) 28251999.615 —0.009 Q 53 F1({ 6) 28412573.094 0,008 R 72 F2(10) 28515844.150 0.010
P 84 A2( 1) 28B252005.614 0.006 Q 38 F2( 0) 28412581.959 0,039 R 72 A2( 3) 28515844.541 0.009
P 84 P2( 3) 28252005.891 0.003 Q 38 E ( 0) 28412582.469 0,042 R 74 E ( 8) 28515857.680 0.004
P 84 F1( 3) 28252006.168 0.000 Q 38 P1( 0) 28412582.976 0.039 R 74 F2(12) 28515857.682 0.00%
P 84 Al{ 1) 28252006.444 —0.003 Q 43 P1{ 8) 28412599.129 —0.032 R 74 A2( 3} 28515857.686 0.005
P 83 FZ{14) 28252056.358 0.014 Q 45 F2( 7) 28412602.229 —0.034 R 89 A1( O) 28515909.38¢ -0.003
P B3 E ( 9) 28252136.052 —0.086 Q 48 P2( 5) 28412626.007 0.033 R 89 E ( O0) 28515909.384 —0.003
Q 43 E( 5) 28912626.400 —0.033 R 89 F1{ 1) 28515909.384 -0.003
Q 43 F2( 8) 268412662.331 -0.024 R 73 E ( 4) 28515913,350 0.004
Coincidences with P20 of CO, Q 47 E ( 4) 2B412662.561 —0.008 R 73 F1( 7) 28515913.373 0.005
Q 52 E ( 4) 28412675.428 -0.020 R 73 Al( 2) 28515913.416 0.004
P 57 F1( 3) 28305999.064 0.006 Q 52 F1( 6) 28412684.371 —0.011 R 66 AZ2( O) 28516003.635 —0.003
P 57 Fz( 3) 28305999.064 0.006 Q 46 Al( 1) 28412685.722 —0.008 R 66 F2( ©O) 28516003.636 —~0.003
P 58 F2( 9) 28306027.542 -0.066 Q 45 F1{ 8) 2B412689.322 -0,037 R 66 F1( 0) 28516003.637 —0.004
P 58 F1( B) 28306027.756 —0.068 Q 52 Al( 2) 28412701.510 0.01) R 66 A1( 0) 28516003.638 -0.004
P 59 PI1( 9) 28306083.696 0.008 Q 47 P2( 7) 28412736.801 —0.007 R 83 A1( 0) 28516052.029 0.009
P 60 F1( 1) 28306149.748 -1.843< Q 51 P2( 6) 28412795.369 —0.028 RB3IE( 1) 28516052.029 0©.009
P 60 E ( 0) 28306149.854 ~1.845<¢ P 4 Al( O) 28412810.623 -0.011 R 83 F1( 2) 28516052.029 0.009
P 60 F2( 1) 28306149.961 -1.846< Q S1 P1{ 6) 28412817.961 —0.002 R 77 P1( &) 28516080,476 0.002
P 59 Fz{ 8) 28306151.890 —0.026 P 4 F1( 0) 28412827.541 -0.006 R 77 F2( 4) 28516080.476 0.002
P 59 A2{ 3) 28306252.637 ©0.102< Q 40 Al({ 0) 28412836.556 0.009 R 84 R2{ 7) 28516032.006 O0.00C
P 55 Fz( 0) 28306312.965 —-0.011 P 4 E( 0) 28412839.5%0 -0,002 R 94 E (15) 28516092.006 0.000
P 55 F1( O0) 2B306312.965 —0.011 Q 45 A1( 2) 28412840.627 -0.035 R 94 F2(23) 28516092.006 0.000
P 56 A2( 3) 28B306352.765 0.022 Q 40 F1( 1) 28412842.743 0.011 R 70 A1( 2) 28516133.528 0.020
P 56 E ( 8) 28306352.765 0.022 R 86 Al( 6) 28516135.49C 0.002
P 56 P2(12) 28306352.765 0.022 R 86 E (13) 28516135.490 0.002
P 59 F2(10) 28306451.162 —0.358<¢ Coincidences with R10 of Ny0 (a) R 86 F1(19) 28516135.490 0.002
R 69 FP2(12) 28516214.198 -0.023
P 3 F1( 0) 28414538.220 —0.007 R 70 F1( 6) 28516224.553 —0.004
Coincidences with P18 of CO, Q 35 F1( 7) 28814544.247 0.091 R 71 F1( 9) 28516235.B69 0.020
Q 43 F1( 5) 28414545.046 —0.001 R 69 E ( B) 28516236.825 -0.051
P 33 F1( §) 28359647.866 -0.003 P 131 F2( 0) 28414556.241 -0.012 R 67 Al( 4) 28516240.568 0.015
P 32 F2( 7) 28359656.406 -0.442< Q 35 E ( 4) 28414557.644 0.043 R 67 F1(15) 28516240.600 0.015
P 32 F1( 6) 28359656.412 —0.442< Q 39 F2( &) 28414564.734 —0.013 R 67 F2{15) 28516240.632z 0.01%
P 33 Fz( 4) 28359689.209 -0.013 Q0 43 E ( 3) 28414567.138 -0.013 R 67 A2( 5) 2B516240.664 0.014
P 33 AZ( 1) 28359780.517 0©.035 Q 35 F2( 7) 28414671.252 0.050 R 71 F2( 9) 28516246.975 0©.007
P 33 P2{ 5) 28359881.944 -0.01¢ P 3 A2( 0) 28414578.726 -0.011 R 69 F1{13) 28516254.852 -0D.058
P 33 E ( 3) 28359915.362 —0.009 Q 40 AY( 1) 2B414592.446 -0.029 R 81 F1( 3) 28516266.540 0.001
P 33 P1( 6) 28359960.5%0 0.017 Q 37 F1( 7) 28414593.720 0.008 R 81 F2( 3) 28516266.590 0.001

Note. For each laser line which has been used in the present work, we indicate the transitions of SFg which

are in close coincidence: rovibrational assignment (branch, Jy, Cy, and ng), final observed frequency in MHz
(after deconvolution of the fine structure line from its hyperfine structure), and difference (obs. — calc.)

frequencies in MHz. Lines which are marked with ({) are kept outside the numerical fit.

As for the eight lines which irremediably remain out of the final fit, the observed
deviations are really too large (with respect to o4 and to the experimental accuracy)
to look for ““accidental” reasons such as experimental or computational errors. On
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the other hand, they are too small to set forth wrong rovibrational assignments (what
is also completely excluded by the observed hyperfine structures). Moreover, it is
striking that:

(1) all these lines belong to the P branch, that is, are related to (R = J + 1)
sublevels of (v = 1);

(2) the corresponding values of J are very limited and almost regularly spaced
(J = 31, 58-59, and 82);

(3) the deviations of components of the implied multiplets (see Table III) are
exactly the same, just as if these structures were simply shifted in their whole, inde-
pendent of the symmetry species.

These features are illustrated on Fig. 4, where the computed energies of the
(v; = 1) state have been plotted versus J. The black dots indicate the manifolds for
which fine structures have been observed in the present work, and the arrows point
to those structures where discrepancies appear between computed and measured fre-
quencies. Everything seems to suggest that another vibrational level actually crosses
the (R = J + 1) branch of »;. Such a local resonance, leading to a global shift of the
fine structures has already been observed in the spectrum of »; + »4 of methane and
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FI1G. 4. Energy diagram for the (v; = 1) vibrational state of SF¢. The computed rovibrational energies,
with the main rotational term By J(J + 1) cut out, are plotted versus J. The black dots indicate manifolds
for which fine structures have been observed in the present work, and arrows point to those structures where
discrepancies appear between computed and measured frequencies.
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was attributed by Bobin and Guélachvili (49) to a crossing with the upper branches
of the v3 + v4 level.

In the present case, we should look for a vibrational level close to vy which could
interact in a similar manner. The problem seems difficult to solve. Indeed, the only
vibrational level which is close enough to v3, and for which a real crossing with v is
possible, is v4 + v¢, whose center is only 13.8 cm™! higher (around 961.9 cm ™). Un-
fortunately, no pure vibrational interaction can occur between the two levels because
they are of opposite parities (respectively, Fi, and A,, + E, + F\, + F5,), and the
interaction operator would be of parity u, which is forbidden (the Hamiltonian must
be A 1 g).

But the possibility of hyperfine interactions between these two levels cannot be
excluded a priori: for XY octahedral molecules, there is an elementary spin operator
of symmetry Fy,. This operator, which is noted §'"¥ by Michelot (Ref. (35), p.
294), can appear in the Hamiltonian only when it is coupled with vibrational operators
which are off-diagonal versus the quantum numbers v, and of parity u; and this is
exactly what would happen in the present case. Nevertheless, although we have not
yet carried out a complete calculation, we think that this attractive possibility must
be dismissed for two serious reasons:

(1) the interaction operator that we can build in this way will have matrix elements
depending on the hyperfine quantum numbers, and the hyperfine structures therefore
should be considerably perturbed, which is not the case;

(2) the energy contribution of the implied operator will be certainly smaller than
the main hyperfine terms, that is a few tenths of a MHz, whereas the observed dis-
crepancies reach almost 2 MHz.

So, if we reject the hyperfine interactions to explain the observed perturbations,
there remains only the possibility of pure vibrational ones, but involving one or several
other levels of parity u. In this case, there are three possible candidates: vs + g,
v, + vg, and 3vg, whose centers are located, respectively, around 870.0, 990.0, and
1040.4 cm™'. But one must notice that these levels are too far from »; to allow a real
crossing with »3 for J values lower than 100. So, in this hypothesis, the perturbations
of v; would not be limited to a few J values but would involve, more or less strongly,
any manifold. As a consequence, the apparent localization that we observe should be
simply considered as the result of the limited sampling of the present measurements.

A deeper understanding of this problem can be brought by new measurements
involving a larger number of v; manifolds. But these measurements must be accurate
enough to detect perturbations as weak as a fraction of a MHz, that is about 10~°
cm™~!. Conventional infrared techniques are then excluded, since we require a sub-
Doppler resolution. So, we have to wait for new results from saturated absorption
experiments involving various isotopic species of CO, lasers.

Anyway, if vibrational interactions are actually responsible for the observed dis-
crepancies, only a complete calculation involving all the implied levels can bring a
satisfactory solution to the numerical problem. One will understand that, from this
numerical point of view, we are not yet prepared to analyze such “polyads™ of heavy
spherical tops, because of the dimensions that the Hamiltonian matrices would reach
even at rather low-J values. Besides, the tensor form in the O(3) group, which has
been used in the present work, would no longer be well adapted to the problem, and
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another formalism should be introduced, for instance, the one developed by Champion
(50) for the polyads of tetrahedral molecules.

Then, except for new experimental and computational developments, the present
problem will probably remain unsolved for some time.

IV.C. Calculation of the Infrared Spectrum up to J = 95

From our final set of molecular constants (Table I), we computed the whole infrared
spectrum of the »; band up to J = 95, including the 11 520 allowed transitions. Of
course it is not possible to publish the complete listing of all the frequencies, but this
can be obtained from the authors, in paper or magnetic tape form. The accuracy of
the computed frequencies may be estimated to be less than 0.100 MHz (except for
the possibly perturbed transitions, where it can raise up to a few MHz, as already
mentioned).

At the time when our calculations were completed, we had communication from
A. Valentin and L. Henry (57) of a spectrum recorded on the FT-IR spectrometer of

TABLE IV

Predicted Resonances of SF¢ within 4150 MHz of Various Isotopic CO, Laser Lines

R42 F2( 1) 28484391.975 : P22 -93.082 P81 F2( 5) 28248B837.500 : P29 138.459
CO, ISOTOPE 12-18-18 BAND I R43 F1( 6) 28484603.807 : P22 118.750 P81 E ( 3) 28248837.500 : P29 138.459
R45 A2( O) 28484632.231 : P22 147.174
R45 P2( 2) 28484632.235 : P22 147.178 P70 Al( 4) 28276126.82% : P28 -96.128
P89 F1(19) 28223538.710 : P32 51.164 R45 E ( 1) 28484632.238 : P22 147,181 P70 F1(12) 28276126.829 : P28 -96.128
P88 P2(19) 28223538.710 : P32 51.164 P70 E { 8) 28276126.830 : P28 -96.127
R90 A2( 3) 28534138.397 : P20 -148.901 P74 FP1( 1) 28276168.674 : P28 -54.283
P72 P2( 6) 28277198.902 : P30 -90.929 R88 F1{ 7) 28534163.192 : P20 -124.106 P74 E ( 1) 28276168.681 : P28 -54,276
P72 F1( 6) 28277278.104 : P30 -11.727 R88 AL( 2) 2B534256.014 : P20 -31.284 P74 P2( 1) 28276168.688 : P28 -54.269
P72 AlL( 2) 28277380.030 : P30 90.199 R94 F2(13) 28534305.713 : P20 l8.415 P68 A2( 4) 2B276318.202 : P28 95,245
P67 E ( 0) 28277419.556 : P30 129,725 R94 P1(13) 28534305.758 : P20 18.460 P68 E (10) 28276318.202 : P28 95.245
P67 A2( O) 28277419.556 : P30 129.725 RBS F2{17) 28534316.757 : P20 29.459 P68 F2(15) 28276318.202 : P28 95.245
P67 F2( 1) 28277419.556 : P30 129.725 R85 E (11) 28534317.039 : P20 29,741 P71 A2( 2) 28276356.929 : P28 133.972
R85 F1(18) 28534317.321 : P20 30.023 P71 F2( 7) 2B276357.023 : P2B 134.066
P45 F2( O) 28330141.585 : P28 -147.600 R84 FP1( 2) 28534333.740 : P20 46 . 442 P71 E { 4) 28276357.070 : P28 134.113
P45 F1( 0) 28330141.585 : P28 -147.600 R84 E ( 1) 28534333.766 : P20 46.468
P48 F1( 2) 28330255.642 : P28 -33.543 R84 P2( 2) 28534333.792 : P20 46 . 494 P60 P2( 6) 28303518.958 : P27 -32.100
P48 E { 1) 28330264.517 : P28 -24.668 R86 F1( 4) 28534368.951 : P20 81.653 P60 F1{ 6) 28303558.840 : P27 7.782
P48 P2( 2) 28330273.331 : P28 -15.854 RB6 E ( 3) 2B534371.076 : P20 83.778 P58 E ( 7) 28303611.069 : P27 60.011
P47 P1( 4) 28330301.406 : P28 12.221 R86 P2( 4) 28534373.199 : P20 85.901 P58 F2(1l) 28303611.069 : P27 €0.011
P47 F2( 5) 28330302.930 : P29 13.746 R83 F2(19) 28534419.161 : P20 131.863 PS8 A2( 3) 28303611.06%9 : P27 60.011
R83 E (12) 28534419.163 : P20 131.865 PS9 E ( 3) 28303694.738 : P27 143.680
Q92 Al( O) 28382347.682 : P26 —-139.546 RB3 F1(19) 28534419.164 : P20 131.866 P59 F1( 5) 2B303694.813 : P27 143.755
Q92 F1{ 2) 28382347.691 : P26 -139.537 P59 Al( 1) 28303694.964 : P27 143.906
Q92 F2( 2) 28382347.700 : P26 -139.528
Q92 A2( 0) 28382347.709 : P26 -139.519 CO, ISOTOPE 12-16-18 BAND I Pa6 F2{ 9) 28330619.959 : P26 -63.637
P21 A2( O) 2B38B2424.929 : P26 -62.299 P46 F1( 8) 28330619.962 : P26 -63.634
P21 F2( 2) 28382447.516 : P26 —39.712 P47 E ( 3) 28330770.452 : P26 86.856
P21 E ( 1) 28382461.411 : P26 -25.817 P95 A2( 4) 28221016.553 : P30 37.503 P47 F1( 5) 28330774.243 : P26 90.647
Q89 F1(21) 28382576.361 : P26 89.133 P95 P2(13) 28221030.331 P30 51.281 P47 Al( 1) 28330782.160 : P26 98.564
Q89 E (13) 28382576.362 : P26 89.13¢ P95 E ( 8) 28221037.511 : P30 58.461 P48 F1( 1) 28330790.682 : P26 107.086
Q89 F2(20) 28382576.363 : P26 89.135 P48 E ( 0) 28330791.607 : P26 108.011
P21 P1( 3) 28382577.937 : P26 90.709 P84 Al( 3) 28248556.485 : P29 —~142.556 P48 P2( 1) 28330792.518 : P26 108.922
P83 F1( 9) 28248566.118 : P29 -132.923
Q92 F1(21) 28433790.173 : P24 -95.244 P83 F2( 9) 28248566.445 : P29 -132.596 P33 E ( 0) 28357550.863 : P25 -69.942
Q92 P2(22) 28433790.173 : P24 -95.244 P84 F1( 8) 28248604.241 : P29 -94.800 P33 F1{ 1) 28357550.865 : P25 -69.940
Q82 A2( 6) 28433915.451 : P24 30.034 P79 AI( Q) 28248629.448 : P29 -69.593 P33 AL( O) 28357550.868 : P25 -69.937
Q82 E (13) 28433915.451 : P24 30.034 P79 E ( 1) 28248629.448 : P29 -69.593 P34 Al( 1) 28357620.857 : P25 .082
Q82 F2(20) 28433915.451 : P24 30.034 P79 F1( 2) 28248629.448 : P29 -69.593 P34 P1( 3) 28357661.270 : P25 40. 465
P84 E ( 5) 28248631.535 : P29 -67.506 P34 E ( 2) 28357685.785 : P25 64,980
R43 Al( 1) 28494354.618 : P22 —130.439 P77 P2( 0) 28248745.724 : P29 46.683
R42 F1( 1) 28484386.883 : P22 -98.174 P77 F1( 0) 28248745.724 : P29 46.683 Q87 FL(20) 2B38428B8.485 : P24 -74.426
R42 E ( 0) 28484389.485 : P22 -95.572 P8l A2( 1) 28248837.500 : P29 138.459 087 E (13) 298384288.486 : P24 -~74.425

Note. For each isotope we give the rovibrational assignment of the SF4 transitions followed by their
computed frequencies, the involved CO, line, and the computed detunings (SFs — CO,), with respect to the
frequencies given by Freed et al. (52). All values are in MHz.
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TABLE IV—Continued

Q77 F2{ 6) 28411032.540 : P23 122.415 R68 F2( 4) 28515130.063 : P19 -23.
12-16-18 (continued) Q77 F1( 6) 28411032.543 : P23 122.418 RE9 F1(11) 28515204.491 : P19 50.
Q84 E ( 9) 28411042.873 : P23 132,748 R69 F2(10) 28515282.956 : P19 129.

812
616
081

P2(20) 28384288.487 : P24 -74.424 Q84 Fl(14) 28411042.873 : P23 132.748

F2( 2) 28384325.223 : P24 -37.688 Q84 Al( 5) 28411042.873 : P23 132.748 R89 F2(20) 28540790.616 : P18 61,
F1( 2) 28384351.517 : P24 -11.394 Q76 E ( 8) 28411047.703 : P23 137.578 REB9 E (13) 28540790.616 : P18 61,
Al( ©0) 28384413.997 : P24 51.086 Q76 FP1l(12) 28411047.706 : P23 137,581 R89 F1(21) 28540790.617 : P18 61.

A2( 0) 28384413.997 : P24 51.086 Q76 Al( 4) 28411047.710 : P23 137.585

235
235
236

P2( 0O) 28384413.997 : P24 51.086 Q47 A2( 3) 28411051.049 : P23 140.924
F1( O) 28384413.997 : P24 51.086 053 F1{ 8) 28411059.942 : P23 149.817 CO, ISOTOPE 13-16-16 BAND I
Al{ 0) 28384433.805 : P24 70.894

P1( 1) 28384495.676 : P24 132.765 R10 E ( 1) 28437304.734 : P22 42.086

R10 P2( 2) 28437306.088 : P22 43.440 P82 E ( 9) 28247354.231 : R42 -32.
F1( 5) 28410807.133 : P23 -102.992 R10 A2( 0O) 28437309.014 : P22 46.366 P82 F2(14) 28247354.231 : R42 -32.
0 PI({ 3) 28410815.211 : P23 -94.914 Q91 P1{ 0) 28437411.410 : P22 148.762 P82 A2( 4) 28247354 231 : R42 -32

E ( 4) 28410832.817 : P23 -77.308 Q91 P2( O) 28437411.410 : P22 148.762 P85 P2(14) 2B247418.428 : R42 31.
F2( 7) 28410838.086 : P23 -72.039 P86 F1( 3) 28247424.074 : R42 37.
A2( 2) 298410848.384 : P23 -61.741 R27 P1( S) 28463281.087 : P21 -139.578 P86 E ( 2) 28247424.273 : R42 37.
P1(10) 28410875.318 : P23 -34.807 R28 E ( 3) 28463545.141 : P21 124.476 P86 FP2( 3) 28247424.472 : R4z 37.

E {( ) 20410878,122 : D23 -32.002 R28 P2( §) 28463545,340 ; P21 124,684 ©DPR4AE { &)

{ €) 2e410278,122 : P23 32.002 R22 P2{ S5} 28462545,242 ; P21 124 re

P2( 9) 28410880.991 : P23 -29.134 R28 A2( 1) 28463545.767 : P21 125.102 P84 F2(10) 28247463.701 : R42 76.
Al( 2) 28410906.360 : P23 -3.765 R27 Al( 1) 28463567.716 : P21 147.051 P85 E ( 9) 28247465.062 : R42 77.

FP1( 8) 28410952.251 : P23 42.126 R27 F1{ 6) 28463569.723 : P21 149.058 P84 A2( 3) 28247468.842 : R42 81l.
P2( 7) 28410953.503 : P23 43.378 P8O Al{ 5) 28247471.712 : R42 84.
F1{ 7) 28410964%.325 : P23 54.200 R46 Fi{ 2) 29485243.042 : P20 ~-141.311 P80 E (11) 28247471.712 : R42 84.

F
F2( 7) 28410978.066 : P23 67.941 R46 E ( 1) 28489255.946 : P20 —128.407 PBO F1(16) 28247471.712 : R4z 84,
Al( O) 28410987.657 : P23 77.532 R46 F2( 2) 28489266.600 : P20 -117.753 P85 F1(15) 28247517.794 : R42 130.

F1( 0) 28410987.893 : P23 77.768 R47 F1{ 6€) 28489424.409 : P20 40.056

4 : R4z 7a.1

F2( 0) 28410988.128 : P23 78.003 R47 F2( 6) 28489450.419 : P20 66.066 P72 F1( 1) 28280534.064 : R44 ~-96.

2 AZ{ 0) 28410988.364 : P23 78.239 P72 E ( 0) 28280534.074 : R44 -96.7
A2( 1) 2B411010.815 : P23 100.690 R87 A2({ 0) 2B515016.118 : P19 -137.757 P72 F2( 1) 28280534.085 : R44 -96.
E ( 9) 28411012.081 : P23 101.956 R87 E ( 0) 28515016.118 : P19 -137.757 P70 E ( 5) 282B0724.484 : R44 93.
P1(13) 28411012.081 : P23 101.956 R87 F2( 1) 28515016.118 : P19 -137.757 P70 F2( B8) 28280731.571 : R44 100.
Al( 4) 28411012.082 : P23 101.957 R79 F1{ 3) 28515030.819 : P19 -123.056 P70 A2( 2) 28280746.605 : R44 115.

F2( 6) 28411013.575 : P23 103.450 R79 F2( 3) 28515030.819 : P19 -123.056

FP1( 6) 28411013.576 : P23 103.451 R66 F1( 1) 28515047.162 : P19 -106.713 P57 Al{ 4) 28313136.891 : R46 -95.
F2( 6) 28411014.737 : P23 104.612 R66 E ( 0) 28515047.201 : P19 -106.674 P57 F1(14) 28313136.897 : R46 -95.
F1( 6) 28411014.738 : P23 104.613 R66 F2( 1) 28515047.240 : P19 -106.635 P57 F2(13) 28313136.904 : R46 -95.
A2( 4) 28411019.212 : P23 109,087 R73 F1( 6) 2B8515066.628 : P19 -87.247 P57 A2( 4) 28313136.910 : R46 -95,
F2(14) 2B411019.212 : P23 109.087 R73 F2( 6) 28515066.634 : P19 -87.241 P56 Fl( 3) 28313273.316 : R46 41.
E ( 9) 28411019.213 : P23 109.088 R68 F1{ 4) 28515084.845 : P19 -69.030 P56 E ( 2) 28313293.917 : R46 61.
A2( 4) 28411021.553 : P23 111.428 R72 F2(1l) 28515087.566 : P19 -66.309 P56 F2( 3) 28313309.803 : R46 77.

P2(13) 28411021.555 : P23 111.430 R72 P1(10) 28515087.62% : P19 -66.246

E ( 8) 28411021.556 : P23 111.431 R68 E ( 3) 28515107.239 : P19 -46.636 P41 F2( 9) 28345237.139 : R48 50.
E ( 5) 28411027.642 : P23 117.517 R84 A2( 6) 28515119.451 : P19 -34.424 P4l E ( 6) 28345237.294 : R4B 50.
F2( 6) 28411028.982 : P23 118.857 R84 E (12) 28515119.451 : P19 -34.424 P4l P1(10) 28345237.449 : R4B 51.
P1( 6) 28411028.982 : P23 118.857 R84 F2(19) 28515119.45) : P19 -34.424 P40 E ( 3) 28345320.630 : R4b 134.

the Laboratoire de Spectronomie of Paris. The resolution is 1.2 X 1073 cm™! and the
absolute calibration of wavenumbers (with reference to CO, lines) is about 0.2 X 1072
cm™. Unfortunately the pressure of the gas is rather high and most »; lines are blended.
Despite this (and the fact that many hot bands are excited at room temperature) we
couid identify and assign ali the computed transitions, up to J = $5. Of course, at this
resolution, almost all lines are multiplets, some Q lines covering up to 50 different
transitions. The standard deviation between our computed wavenumbers and the
observed ones is 1.2 X 1073 cm™!, including all transitions, which is close to the
HWHM of single nonblended lines (most lines being two or three times wider). As
tioned above, the resolution, though remarkable for this type of spectroscopy, is

too weak to show evidence of the interaction between »; and other vibrational levels.
To complete this section, and in order to bring to experimentalists valuable infor-
mation for the development of new measurements, we give a list of calculated coin-
cidences between SF¢ and laser lines of other isotopic species of CO, (Table 1V). For
internal consistency, all the reference frequencies of CO; lines have been taken from
Freed et al. (52), where the mean accuracy is only 50 to 60 kHz. In Table IV, we give,

for each isotopic species, the SF; rovibrational assignments followed by the computed
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TABLE IV—Continued

R31 F1( 0) 28466380.116 : RS56 -52.160 P29 E ( 3) 28367826.810 : R28 -124.
13-16-16 (continued) R31 P2( O) 28466380.116 : R56 -52.160 P29 F1( 6) 28367842.205 : R28 -109.
R29 F2( 6) 2846€6505.314 : RS6 73.038 P28 P2( €) 28367938.487 : R20 -13.
P2( 5) 28345326.B08 : R48 140.395 R29 E ( 4) 2B466506.730 : RS56 74.454 P28 F1( 5) 28367938.519 : R28 -—13.

854
459

145

R29 F1( 7) 28466508.094 : R56  75.818B

E ( 2) 28376388.064 : R50 -100.708 R30 P2( 5) 28466550.526 : R56 118.250 Q70 F2( 2) 28398971.709 : R30 -142.
P2{ 4) 28376389.124 : RS0 -99.648 R3O0 P1( 4) 28466552.282 : R56 120.006 Q70 E ( 1) 28398972.207 : R30 -142.
A2( 1) 28376391.287 : R50 -—97.485 Q70 F1{ 2) 28398972.707 : R30 -141.
Al( 7) 28376399.884 : R50 -88.888 R51 P1( 8) 28494954.259 : RS5€ —119.420 Q81 P2(12) 28398977.472 : R30 -136.
A2( 7) 28376399.884 : R50 -88,888 R50 FP1{ 1) 28495037.918 : R58 -35,761 P12 A2( 0) 28398990.720 : R30 -123.
P1(23) 28376399.884 : R50 -88.888 R50 E ( 1) 28495038.605 : R58 -35.074 P12 F2( 0O) 28399016.256 : R30 -98.
F2(22) 2B376399.884 : RSO -88.888 R50 FP2( 1) 28495039.289 : RS8 -34.390 Q77 A1( 4) 28399023.423 : R3O0 -90.

P1( 9) 28407014.086 : RS2 -120.041 R51 Al( 2) 28495204.781 : R58 131.102 Q84 F1( 9) 2B399160.082 : R30 45.
E ( 8) 28407035.447 : R52 -98.68B0 Q67 A2( 5) 28399186.617 : R30 72.
F1(12) 28407035.461 : R52 -—9B.66€ Q67 P2(15) 28399186.669% : R30 72.
Al( 4) 28407035.489 : R52 -98.638 CO, ISOTOPE 13-18-18 BAND I Q67 P1{15) 28399186.721 : R30 72.
P2{ 4) 28407104.978 : R52 -29.149 Q67 Al( 4) 28399186.773 : R30 72.
P2( 7) 28407113.336 : R52 -20.791 Q78 Al( 2) 28399198.076 : R30 83,

P1{ B) 28407113.377 : R52 -20.750 P94 F1(22) 28201766.380 : R1B 83.624 Q81 P1(12) 28399198.311 : R30 84.
F2( 3) 28407132.183 : R52 -1.944 P94 FP2(22) 28201766.380 : R18 83.624 Q84 F2( 9) 28399199.212 : R30 84,

R52 Al( 2) 2B495116.180 : R58 42.501 P12 F1( 0) 28399030.,794 : R30 -83.
P2( 2) 28406989.021 : R52 -145.106 R52 F1({ 6) 2B495123.857 : R58 50.178 P12 Al( O) 28399042.031 : R30 -72.
F1{ 5) 28406993.368 : R52 —-140.75% R52 E ( 4) 28495127.849 : R58 54.170 Q90 E ( 7) 28399097.692 : R30 -16.
A2( 0) 28406994.243 : R52 —-139.884 R53 P1( 5) 28495130.148 : R58 56.469 Q90 P1(11) 28399098.674 : R30 -15.
A2( 3) 28407003.599 : R52 -130.528 RS53 P2( 4) 28495130.325 : RS8 56.646 Q90 Al( ¢) 28399100.634 : R30 -—~13.

F2( 5) 28407135.390 : R52 1.263

E ( 5) 28407135.778 : RS2 1.651 P87 PL( 7) 28236273.461 : R20 -48,299 Q79 A2( 0) 2B429426.241 : R32 -146.
E ( 4) 28B407139.377 : R52 5.250 P87 F2( 8) 28236273.463 : R20 -48.297 Q79 E ( O) 28429426.241 : R32 -146.
F2( B8) 28407141.358 : R52 7.231 P90 F1( 5) 28236426.578 : R20 104.81B Q79 F2( 1) 28429426.241 : R32 -146.
A2( 2) 28407152.284 : R52 18.157 P88 F2(12) 28236433.142 : R20 111.382 R 5 P1{ 0) 28429457.760 : R3Z2 -115.
E ( 2) 28407159.177 : R52 25.050 P90 E ( 3) 28236433.261 : R20 111.501 R 5 F2( 0) 28429469.403 : R32 -103.
E ( 2) 28407169.089 : RS2 34.962 PBB F1(1l1) 28236433.486 : R20 111.726 R 5 E ( 0) 28429499.867 : R32 -73.
F1( 3) 2B407186.128 : R52 52.001 P90 F2( 5) 28236439.946 : R20 118.186 R 5 F1( 1) 28429505.513 : R32 -67.
A2( 3) 28407195.248 : R52 61.121 Q69 F1( 0O) 28429537.790 : R32 -35.
F2(12) 28407195.306 : R52 61.179 P75 F1(11) 28270126.904 : R22 —143.563 Q69 F2( 0) 28429537.790 : R32 -35.]
E ( 8) 28407195.335 : R52 61.208 P75 AL( 3) 2B270261.563 : R22 -8.904 Q91 F1{ 1) 28429667,289 : R32 94.
F1(12) 28407197.229 : R52 63.102 Q91 P2( 2) 28429667.289 : R32 94.

E ( 7) 28407197.934 : R52 63.807 P60 F2( 6) 28303518.958 : R24 -8.051

P2(11) 28407198.640 : R52 64,513 P60 F1( 6) 2B8303558.840 : R24 31.831 R46 E ( 3) 28B488239.569 : R36 -125.
P1( 6) 28407200.059 : R52 65.932 P58 E ( 7) 28303611,069 : R24 84.060 R51 F1( O) 28488251.876 : R36 —113.
P2( 8) 28407281.279 : R52 147.152 P58 P2(11) 28303611.069 : R24 84.060 R51 P2( 0) 28488251.876 : R36 -113.
F1( 7) 28407281.361 : R52 147.234 P58 A2( 3) 28303611.069 : R24 84.060 RSO F1(11) 28488253.017 : R36 —1l12.

P29 F2( 5

RS0 F2(11) 28488253.017 : R36 —112.
A2( 7) 28437004.180 : R54 -112.971 P45 FP2( 7) 28335961.111 : R26 -127.155 R46 P2( 5) 28488255.466 : R36 ~109.
E (14) 28437004.180 : RS54 —-112.971 P45 A2( 2) 28336000.323 : R26 -87.943 R46 A2( 1) 28488295.412 : R36 -69.
F2(22) 28437004.180 : RS54 —-112.971 R45 F2( 9) 28488431.651 : R36 66.
28367811.369 : R28 —140.295 R4S E ( 6) 28488433.249 : R36 67.

764
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frequencies and detunings (SFs — CO,) (in MHz). To be short the coincidences are
given only within 150 MHz from the CO, line centers. More extended tables can
also be obtained from the authors. Yet this list already shows what wonderful play-
ground the »; band of the SFs molecule is for saturated absorption spectroscopy!

V. CONCLUSIONS

Even though the results presented in this paper appear to represent a considerable
improvement in the rovibrational analysis of the v; band of SF¢ and demonstrate the
power of the model which we have used in association with very-high-accuracy mea-
surements, we have to investigate how further refinements could be made.

First, in a midterm approach of the problem, we may consider two directions of
improvement:

(i) As was already mentioned in Section II, a simultaneous treatment of the
rovibrational and the hyperfine problems can hardly be carried out, given the extreme
complexity and variety of hyperfine structures. But a further iteration between rovi-
brational results and the hyperfine deconvolution procedure should be performed,
leading to a somewhat better determination of both types of molecular constants.
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TABLE IV—Continued

P69 AL( 3) 28283623.192 : P4z 91,930 C0, ISOTOPE 14-18-18 BAND II

13-18-18 (continued) P64 PL(15) 28283623.258 : P42 91.99%6

R4S
R46

P64 E (10) 28283623.259 : P42 31,39%
F1(10) 2B4B8434.807 : R36 69.474 P64 Al{ 5) 28283623.258 : P42 91.996 P78 P2( 8) 28262874.438 : P48 -117
F2( 4) 28488511.593 : R36 146,260 PBO F1{ 1) 28262907.134 : P48 -84

F2{ 2) 28516622.179 : R38 -69.680 Q60 E ( 5) 28411863.592 : P38 —144.397 P77 E ( 5) 28262994.396 : P48 2

P38 P2( 7) 28348162.388 : P40 -22.027 P8O E ( 1) 28262907.136 : P48 -84.
A2( 0) 28516542.138 : R38 -149.721 P38 F1( 6) 28348162.479 : P40 -21.936 P80 F2( 1) 28262907.139 : P48 -84.
F2( 2) 28516542.566 : R38 -—149.293 P37 F2( 0) 28348164.477 : P40 -19.938 P76 Al( 4) 28262932.724 : P48 -58.
F1( 2) 28516542.993 : R38 -148.866 P37 P1{ 0O) 28348164.477 : P40 -19,938 P76 P1{12) 28262932.736 : P48 —58.
Al( 0) 28516543.419 : RI8B —14B.440 P39 P2( 7) 28348213.152 : P40 28.737 P76 E ( 8) 28262932.737 : P48 -58.
F1(18) 28516600.497 : R38 -91.362 P39 E ( 4) 28348237.720 : P40 53,305 P78 F1( 7) 28262944.848 : P48 -46.
F2(18) 28516600,497 : R38 -91.362 P39 P1{ 7) 28348263.593 : P40 79.178 P77 A2( 2) 28262993.755 : P48 2.
F1{ 1) 28516622.179 : R3B -69.680 P77 F2( B) 2B8262994.182 : P48 2.

.184
.488

P1( 6) 28516634.296 : R38 -57.563 Q60 PL( 8) 2B411864.355 : P38 -143.634

F2( 6) 28516634.299 : R38 —57.560 Q60 Al{ 2) 28411865.878 : P38 -142.11) P52 Al{ 2) 28320224.071 : P46 -122.

FPl( B) 28516690.174 : R38 ~1.685 Q45 E { S) 28411874.660 : P38 —133.329 P52 P1{ 6) 28320231.882 : P46 -114
F2{ 7) 28516690.453 : R3B ~1.406 Q49 P1{ 8) 28411898.434 : P38 -109.555 P52 E ( 4) 28320235.942 : P46 -110

F1( 5) 28516719.545 : R38 27.686 Q52 F2( 6) 28411898.573 : P38 -109.416

A2( 3) 28516721.233 : R38  29.374 Q45 F2( 8) 28411899.317 : P38 -108.672 P24 E ( 1) 28376333.327 : P44 -135.
P2(11) 28516724.677 : R38 32.818 47 E { 5) 28411899.730 : P38 —~108.259 P24 P2( 2) 28377026.578 : P44 -41.
P1(11) 28516724.708 : R38 32.849 Q59 P2( 6) 28411950.558 : P38 -57.431 P24 P1{ 1) 28377143.246 : P44 74.
A2( 0) 28516745.948 : R38 54.089 Q59 F1( 6) 209411952,674 : P38 -55.315 P24 E ( 0) 28377178.141 : Pa4 109.
E ( 0) 28516745.948 : R38 54.089 Q51 E ( 4) 28411992.958 : P38 -15.031 P24 F2( 1) 28377195.087 : P44 126.
F2( 1) 28516745.948 : R38 54.089 Q47 P2( 8) 28412014.569 : P38 6.580 Q95 P1(22) 28377198.901 : P44 130.
P2(10) 28516755.419 ;: R38 63.560 Q51 F2( 7) 28412033.000 : P38 25.011 Q95 E (14) 28377198.901 : P44 130.
Al( 5) 28516773.707 : R38 81.848 Q58 A2( 2) 28412040.252 : P38  32.263 Q95 F2(22) 28377198.901 : P44 130.

E ( 9) 28516773.707 : R38 81.848 Q58 F2( 8) 28412043.191 : P38 35.202

F1{14) 28516772.707 : R38 81.848 Q58 E ( 5) 28412044.650 : P38 36.661 Q90 F1{21) 28433068.389 : P42 -84.
E ( 6) 28516774.613 : R38 B2.754 Q48 F2( 4) 28412076.484 : P38 68,495 Q90 F2(21) 28433068.389 : P42 -84.
E { 3) 28516808.391 : R38 116.532 Q42 P2( 1) 28412084.931 : P38 76.942 QB0 Al( 6) 28433190.253 : P42 37.
Q42 E ( 0) 2B412089.487 : P38 /1,498 Q80 E (13) 28433190.253 : P42 37.

R31
R31
R91

E (14) 28544263.510 : R40 -36.710 Q42 F1( 1) 28412094.231 : P38 86.242 QB0 P1(19) 28433190.253 : P42 37.

211

651

P1(22) 28544263.510 : RAC -36.710 Q51 A2( 2) 28412101.802 : P38 93,813

P2(22) 28544263,510 : R40 -36.710 Q57 F2( 6) 28412137.071 : P38 129.082 R46 F2{ 4) 28488511.593 : P40 -81.
Q57 P1( 6) 29412141,098 : P38 133.109 R48 Al( 3) 28488555.853 : P40 —37.
Q48 E { 2) 28412148.455 : P38 140.466 R48 P1( 9) 28488555.668 : P40 —37.

€O, ISOTOPE 14-16-16 BAND II R48B E ( 5) Z8B488555.B76 : P40 -37.
R37 P1({ 2) 28474848.683 : P36 —146.899 R46 F1( 4) 2B488566.769 : P40 —26.

P69
P69
P67
P67
P71
P71
P71

R37 P2( 1) 2B474848.693 : P36 —-146.889 R47 F1{ 4) 28488593%.172 : P40 5.
E ( 6) 28283535.992 : P42 4,730 R36 P2( 5) 28474982.714 : P36 -12.868 R47 F2( 5) 284808600.633 : P40 7.
F1{10) 28283560.378 : P42 29.3116 R36 P1{ 4) 28474991.417 : P3% ~4.185 R46 Al{ 1) 28488663.798 : P40 70,

972
712
697
689

607
068
233

F1{ 4) 28283613.363 : P42 82.101

P2( 5) 28283613.364 : P42 82.102 R91 A2( 5) 28537025.518 : P34 —-115.491 R94 F1{ 3) 28543340.278 : P38 —46.
P2(17) 28283619.071 : P4z B7.809 R92 P2( 8) 28537193.823 : P34 52.814 R94 E ( 2) 28543340.341 : P38 —46.
E (11) 26283619.071 : P42 87.809 R94 F2( 3) 28543340.403 : P38 -—46.

F1(17) 28283613.072 : P42 87.810

33l

206

(ii) Valuable information can also be brought by additional saturated absorption
measurements involving isotopic CO, lasers; Table [V shows that such experiments
would be particularly adequate for SFs. The accuracy of the molecular constants
derived from a larger set of data would be improved, and one can even expect that
the most important sixth-order contributions could be estimated.

Now, in a long-term perspective, two other directions are also to be investigated:

(1) First, as mentioned in Section III, the simultaneous fit of the ground and
excited state molecular constants would be greatly improved if ““forbidden™ transitions
were observed. Although the intensities of such lines are extremely weak in the case
of SF¢,’ the recent progress in the sensitivity of laser spectroscopy is so important that
the observation of such transitions may be expected in the future (we have recently

? For instance, all eigenvectors for J = 95 represent rovibrational states which are pure to better than
99.6%. Then, in linear absorption spectroscopy, for example, the forbidden lines will have relative intensities
less than 0.4% of the one of the allowed transitions, which is consistent with the estimation obtained by
Galbraith er al. (65) from approximations involving clustered levels. In saturation spectroscopy, the intensity
ratio of forbidden and allowed transitions will be even smaliler since the power four of the dipole moment
is involved in the calculation.
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(4) demonstrated the possibility of recording very weak lines and crossover resonances
with a good long-term frequency control).

(i1) From the vibration-rotation point of view, we have already pointed out that
a global analysis of v; and its interacting levels would probably remove the important
discrepancies appearing for some observed lines. Such treatments of polyads of vibra-
tional levels can be done using the formalism developed by Champion (50). Many
analyses have been worked out at the Dijon Laboratory for light spherical tops; among
the most recent studies, we must quote those concerning the dyads (v,/v4) of 2CH,
(66), SiH, (67), and 2CD, (68); the dyads (v, /v3) of SiH,4 (69) and GeH, (70); and the
pentad (v, /v3/2v,/2v4/v2 + v4) of 2CH, (71). All these analyses lead to standard de-
viations of the fitted lines close to the experimental accuracy (typically 10™* cm™! for
FT-IR spectra). In the case of »; of SF, with the help of extended saturation spec-
troscopy data, a similar procedure can be expected to reach the kilohertz accuracy.
For the moment, the numerical computation involved in such a polyad treatment
can hardly be foreseen for heavy molecules, because of the dimensions of the Ham-
iltonian matrices and of the number of implied spectroscopic parameters. Besides,
this procedure requires experimental data involving transitions to (or from) all implied
vibrational levels. Presently, such data are not available for SF;, except for a few
measurements of harmonic bands (47, 53, 54) or hot bands lines (55). Nevertheless,
the increasing progress in experimental and computational techniques allow us to
think that these polyad calculations will be performed within the next 10 years. We
should just remember that 10 years ago, though the theoretical material had already
been known for a long time, a numerical analysis with the accuracy which is achieved
in the present work was hardly conceivable!

As a final conclusion, let us point out that our analysis program applies to any F,
or Fy, rovibrational band of a spherical top, but is of course especially adapted to
heavy molecules (with J values up to 95, presently), either tetrahedral (SiF,, RuO,,
XeQ,- - -) or octahedral ones (mainly the hexafluorides: WFg, UFs - - +). It has recently
been used with success for the »; band of the four main isotopic species of OsO,, with
a FT-IR spectrum (56); an extension of this work is now in progress since, on one
hand, new isotopic FT spectra have been recorded and, on the other hand, considerable
work has also been pursued, using saturated absorption spectroscopy, for many years
(1,4, 7, 17-19). A similar program could then follow on the v; band of SiF,, for which
many close coincidences with CO; lines have been pointed out (72) and already assigned
in a detailed analysis of this band (73).
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