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An extended set of 321 frequencies of vibration–rotation lines of then3 band of SF6 has been measured by saturation
spectroscopy using various isotopic species of CO2. A least-squares fit of these data has been performed using an effective
Hamiltonian written either with a spherical tensor or with a cubic tensor formalism. We have derived correspondence formula
between the parameters in the two approaches and checked that both formalisms give the same results up to the seventh o
Corrected parameters are given for the fit with a fifth-order Hamiltonian. An accurate representation of the band is obtaine
at the tenth order (standard deviation' 12 kHz) with a remarkable predictive power (better than 40 kHz) forJ values# 100.
The convergence properties of the Hamiltonian power expansion are discussed.© 2000 Academic Press
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1. INTRODUCTION: MOTIVATIONS AND
EXPERIMENTAL DATA

In a first paper (hereafter referred to as Paper I) on
subject, published in 1987 (1), the goal was to obtain a glob
understanding and a theoretical fit of a full vibration–rota
band of a complex polyatomic molecule, obtained thanks t
modern techniques of optical frequency measurements a
sub-Doppler spectroscopy. What is meant by global un
standing is, in fact, a test of an effective Hamiltonian, tak
fully into account the symmetry properties of the molecule
group theoretical methods of tensor analysis. Then3 band o
SF6 appeared to us as a remarkable candidate for such
because of the richness brought by the high symmetr
spherical tops and because of the experimental possib
offered by saturation spectroscopy with CO2 lasers, whos
emission bands match this absorption band. Also, then3 band
of SF6 seemed well-isolated, i.e., relatively free of pertu
tions from other vibration modes. This first attempt was o
partly successful because there was a small unsuspecte
in a fifth-order term of the Hamiltonian1 and because th
sample of measured frequencies was too limited. A numb
lines had to be kept out of the fit and the residual stan
deviation was significantly larger than the accuracy of
experimental data. In this paper, we make a new att

1 In Paper I, the term=858 h{264} 3 f( J, 5, 7) of Eq. [20] must b
eplaced by=858 h{264} 3 f( J, 3, 5).
188
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toward the same goal, with a corrected Hamiltonian and
an extended set of experimental data. A second motivatio
this work was to compare two ways to write the Hamilton
specifically using either a spherical tensor (as in I) or a c
tensor formalism, and to show their equivalence and ev
establish a correspondence table (Rosette stone) betwee
and their parameters.

The extended set of frequencies used in this paper ha
origins. A first subset comprises the 136 vibration–rota
lines used and presented in detail in Paper I. These lines
been recorded (circa 1982) with the Villetaneuse satur
spectrometer (2, 3) at the highest resolution at that time.2 The
hyperfine structure of these lines was fully resolved an
deconvolution procedure could be used to retrieve the
vibration–rotation frequencies with a few kilohertz accurac
second subset of 185 lines was recorded and measured a
using other isotopic species of CO2 (12, 13 for C; 16, 18 for O
in lasers illuminating external Fabry–Perot resonators fi
with SF6. In this case, the linewidth was limited by transit a
power broadening to a larger value for which the hype
structure was not resolved. Furthermore, for tight supe
clusters, the hyperfine mixing of levels with different vib
tion–rotation symmetry species (5, 6) gives rise to complicate
asymmetrical structures which are only partly resolved. F
number of these cases we have calculated the expected

2 Since then a new technique using slow molecules selection has
emonstrated and the linewidth has been reduced by another factor of4).
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189n3 BAND OF SF6
ture to determine an approximate position of the true vibrat
rotation line center (i.e., free of hyperfine effects). In m
cases we could not use this calculated structure to perfor
accurate deconvolution because these spectra were n
corded in low-laser field conditions giving rise to distorti
through differential saturation of hyperfine components
crossovers). For these lines this has resulted in a large u
tainty which we have usually fixed to the value of the
quency extension of the underlying unresolved structure
cept in the case of exceptionally symmetric structures)
these frequencies have been used in the fits and are liste
their corresponding uncertainties in Table 1.

2. COMPARISON OF HAMILTONIANS IN THE
SPHERICAL TENSOR AND CUBIC

TENSOR FORMALISMS

2.1. Background

The vibration–rotation Hamiltonian of SF6 in its ground
electronic state can be expanded into a power series o
fundamental operatorsqi , pi , and Ja, where qi and pi are,
respectively, the normal coordinates and the conjugate
menta of the vibrations and whereJa are the components of t
angular momentum operator of the molecule in the mole
frame. The common case for semirigid molecules is a r
decrease in the order of magnitude of the power expa
coefficients with increasing powers of the rotational and vi
tional operators. This is related to the existence of an ord
parametere 5 (m/M) 1/4 for the Born–Oppenheimer appro-
mation (8), m being the mass of the electron andM being the
mass of the molecule. The hierarchy of energies reads asErot '
e 2Evib ' e 4Eel, where Erot, Evib, and Eel are the rotationa
vibrational, and electronic energies, respectively. This hi
chy breaks down at high values of quantum numbers. A
lowest order of approximation, the Hamiltonian is the sum
Hamiltonians for harmonic oscillators and for a rigid rotor
the case where a vibrational mode of molecule is well isola
i.e., if the vibrational levels under consideration are no
strong resonance with other vibrational states, the formalis
an effective Hamiltonian for the mode can be applied to
culate the corresponding vibration–rotation spectrum.

The effective Hamiltonian of then3 mode of SF6 is of
spherical symmetry up to the first order of approximation w
only the Coriolis interaction enters the zero-order Hamilto
(9). The use of theO(3) symmetry group makes it easier
classify the energy states and to derive the approximate
tion rules for the transitions between the vibration–rota
states of then3 mode. At a higher order of approximation,
symmetry of the vibration–rotation Hamiltonian of then3 mode
is reduced toOh and it is convenient to classify the ene
states and to calculate the vibration–rotation energy spe
in the frame of a formalism using the symmetry point gro

In the case of then3 mode all the fundamental operators (
Copyright © 2000 by
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vibrational momenta and coordinates as well as the an
momentum operators) and the vibrational and rotational w
functions can be classified in the frame of theO(3) group. The
tensor coupling scheme of theO(3) group can be used to bu
up the complete sets of powers of operators and vibra
rotation wavefunctions. The subsequent procedure of red
the spherical tensor spaces of a given rank to the irredu
representations of the point symmetry group must be us
get the basis sets classified by the symmetry with respect
Oh group.

The alternative approach to the power expansion o
Hamiltonian is to start first with the classification of the f
damental operators and the vibrational and rotational w
functions in the frame of point group symmetryOh and then to
use the coupling procedure of the point symmetry grou
build up the complete basis set of powers of operators
vibration–rotation wavefunctions.

Both approaches are equivalent in the case of the isolan3

mode ofXY6 molecules ofOh symmetry and are used in th
work for the calculation of the vibration–rotation spectra of
fundamental transitions of then3 mode of SF6. The advantag
of the spherical tensor formalism is that it makes it easie
trace out the propensity rules which follow from the sphe
symmetry of the first-order Hamiltonian while the advantag
the point symmetry group formalism is that it can be ea
applied for the modeling of vibration–rotation spectra eve
the cases where then2 mode is involved and where the ten
formalism encounters the problem thatn2 mode vibrationa
operators cannot be treated as spherical tensors.

The vibration–rotation Hamiltonian can be expanded in
power series of tensor operatorsO{ i } in the frame of a give
tensor formalism as

H 5 O
i

c $i %O $i %, [1]

wherec{ i } are the power expansion coefficients, {i } is an index
which shows how the tensor operator was built from
fundamental operators. To facilitate the computer prog
ming we use the annihilation and creation operators of thn3

vibrational mode as the fundamental operators instead o
momentum and coordinate operators. The well-known
tions which define the creationa1 and annihilationa operator
versus the appropriate momentump and coordinateq operator
are

a 5 ~q 1 ip!/Î2; a1 5 ~q 2 ip!/Î2. [2]

The commutation rules

@a, a# 5 0; @a, a1# 5 1; @a1, a1# 5 0 [3]

enable us to simplify the powers of operators compose
Academic Press
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190 ACEF ET AL.
TABLE 1
Measured Vibration–Rotation Lines of the n3 Band of SF6

Note. Jis the rotational quantum number of the lower state of the vibration-rotation transition;DJ 5 J9 2 J, whereJ9 is the rotational quantum number
the upper state of the vibration-rotation transition;n0 numbers theC symmetry sublevels withinR multiplets in accordance with the definition given
Moret-Bailly [7], R being the approximate quantum number defined in the framework of the spherical tensor formalism via the coupling of vectorsJW and lW as
RW 5 JW 2 lW; n numbers theC symmetry sublevels of the ground vibrational stateJ multiplet in the frame of the cubic tensor formalism with increasing ene
9 numbers theC symmetry sublevels of then3 vibrational stateJ9 multiplet in the frame of the cubic tensor formalism with increasing energy;nexp is the

measured value of the transition frequency;Dn 5 nexp 2 ncal (kHz) wherencal is the calculated transition frequency with the tenth order Hamiltonian;Dn(5) 5
nexp 2 ncal

(5) (kHz) wherencal
(5) is the calculated transition frequency with the fifth order Hamiltonian;s is the experimental uncertainty ofnexp (kHz).
Copyright © 2000 by Academic Press
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TABLE 1—Continued
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TABLE 1—Continued
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TABLE 1—Continued
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195n3 BAND OF SF6
annihilation and creation operators by putting all the crea
operators to the left side from their noncommutating cou
part (normal ordering). The effective Hamiltonian of the
brational states is diagonal in the principal vibrational quan
numbers. The use of creation/annihilation operators facili
the selection from the powers of vibrational operators of
those which have equal powers of annihilation and cre
operators and thus satisfy the above condition of a diag
form for the effective Hamiltonian.

2.2. Symmetrized Operators in Both Groups

2.2.1. The Rotational Operators

In the spherical tensor formalism.The power operators5
f the angular momentum operatorJ are built up and classifie

n the frame of the spherical tensor formalism as:

5 V~K! 5 ~ J 3 J 3 · · ·3 J! ~K!

V

5 ~J 2! ~V2K!/ 2 z ~~~ J 3 J! 3 · · ·! 3 J! ~K!.

[4]

K

Here 5 is the spherical tensor rotational operator,V is the
ower of the angular momentum operatorJ; J2 5 JX

2 1 JY
2 1

JZ
2; K is the rank of the spherical operator5. The coupling o

he spherical components of two spherical tensors is perfo
n accordance with the rules of the quantum theory of ang

omenta:

Tm1

~K1! 5 O
m2,m3

CK2m2K3m3

K1m1 z Tm2

~K2! z Tm3

~K3!, [5]

whereTm
(K) is them component of a spherical tensor of ranK

nd whereCK 2m2K 3m3

K 1m1 is the Clebsch–Gordan coefficient.

In the cubic tensor formalism.The octahedral (cubic) fo
malism described here is deduced from the tetrahedral fo
ism (10, 11). In the octahedral formalism the component

TABLE 1
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the rotational operatorRV(K,nG) are the same as the spher
tensorRV(K) (7) oriented in theOh group,

Rs
V~K,nG! 5 RnGs

V~K!, [6]

whereG is the symmetry species relative to theOh group,n
distinguishes tensors with the same symmetry species in tOh

group, ands is the component of the octahedral tensor.
These components introduced in (7) and called cubic com

ponents of spherical tensors can be given in terms of sph
components by

RV~K! 5 ~R~1! 3 R~1!! ~0! · · · ~R~1! 3 R~1!! ~0!

~V 2 K!/ 2

3 ~~~R~1! 3 R~1!! 3 · · ·! 3 R~1!! ~K!

[7]

K

with elementary rotational operatorRs
(1) 5 2Js and (R(1) 3

R(1)) (0) 5 (4/=3)J2

RnGs
V~K! 5 O

m

~K!GnGs
m Rm

V~K! [8]

where(K)GnGs
m are matrix elements of a unitary transforma

(12).
The spherical components are given by the inverse tran
ation:

Rm
V~K! 5 O

nGs

~K!Gm
nGsRnGs

V~K!. [9]

2.2.2. The Vibrational Operators

In the spherical tensor formalism.In the case of then3

mode, the creation and annihilation operators can be trea
tensors of rank 1u of the groupO(3). Thespherical compo-
nents are defined from the Cartesian components by th
lowing relations:

ontinued
—C
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196 ACEF ET AL.
a11 5 2~ax 1 iay!/Î2 a11 5 2~ax 1 ia y !/Î2

a0 5 az a0
1 5 az

1 [10]

a21 5 ~ax 2 iay!/Î2 a21
1 5 ~ax

1 2 ia y
1!/Î2.

In the case of the fundamental transition of then3 mode the
matrix elements of all the terms including annihilation
creation operators with a power higher than one are equ
zero. The zero power vibrational operator is 1. The oper
relevant for the first vibrational state are defined by the te
coupling relation

A ~Lg! 5 ~a1~1u! 3 a ~1u!! ~Lg!, [11]

where the rankL of the resulting vibrational tensor can be 0
or 2. Here the scalar coupling (scalar product) is defined

~a1 3 a! ~0! 5 v, [12]

wherev is the principal vibrational quantum number of then3

mode. The coupling to tensors of rank 1 and 2 uses the sta
procedure for the spherical tensors yielding the following
respondence relations to the previously introduced (13) vibra-
ional tensors

~a1 3 a! ~1! 5 2l /Î2; ~a1 3 a! ~2! 5 T ~2!, [13]

here l is the vibrational angular momentum andT(2) is the
rank 2 tensor vibrational operator of then3 mode.

In the cubic tensor formalism.The elementary creatio
and annihilation operators (14) are expressed in terms of t
dimensionless normal coordinates and momenta by

ass 5
1

Î2
~qss 1 ipss! [14]

ass
1 5

1

Î2
~qss 2 ipss!. [15]

For the isolatedn3 fundamental band (s 5 3) the vibrationa
ensor operators are

eV3,3
F1uF1u~G! 5

eif

Î@G#
~a3

1~F1u! 3 a3
~F1u!! ~G!, [16]

wheref depends on the paritye of the operator. Even oper
tors (e 5 1) are obtained witheif 5 1 and odd operators a
obtained witheif 5 2i . [G] is the dimension of the irreducib
representationG.
Copyright © 2000 by
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2.2.3. Rovibrational Operators

In the spherical tensor formalism.The complete set of th
powers of vibration–rotation operators of the Hamiltonia
the framework of the spherical formalism are built up
follows;

O $V,K,L,k,i % 5 ~5 V~K! 3 A ~L!! A1g,i
~k! , [17]

wherek is the rank of the vibration–rotation operator in
framework of theO(3). TheindexA1g shows that the reductio
of the k rank tensor was done yielding the octahedral com
nents ofA1g symmetry; the running indexi was used to numb
the differentA1g representations which are contained in
spherical tensor space of rankk.

Finally the following form of Hamiltonian is used for com
puter calculations within the framework of the tensor form
ism

H 5 H0 1 H3, [18]

where the ground state Hamiltonian is taken as

H0 5 O P0
$V,K,L50,k5K,i % z RA1g,i

V~K! [19]

and then3 state vibration–rotation part of the Hamiltonian
taken as:

H3 5 O P3
$V,K,L,k,i % z O $V,K,L,k,i %. [20]

Here we use the subscript index 0 or 3, otherwise the inde
with { V, K, L, k, i } is not enough to distinguish betwe
ome ground state and then3 state parametersP of the mode

Hamiltonian.

In the cubic tensor formalism.The complete set of th
rovibrational operatorsT is built by coupling rotational an
ibrational operators in theOh group. In the case of the grou

state the operators read as

T0
V~K,nG! 5 bRV~K,nG5A1g!, [21]

and in the case ofv3 5 1 state:

T3,3
V~K,nG! 5 b~RV~K,nG! 3 eV3,3

F1uF1u~G!! A1g. [22]

b is a numerical factor equal to=3 (2=3/4)V/2 if ( K, nG) 5
(0, 0A1), and equal to 1 otherwise.

The vibration–rotation Hamiltonian is described by form
lae similar to the spherical tensor formalism
Academic Press
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197n3 BAND OF SF6
H0 5 O t 0
V~K,nG5A1! z T0

V~K,nG5A1! [23]

H3 5 O t 3,3
V~K,nG! z T3,3

V~K,nG!, [24]

wheret 0
V(K,nG) and t 3,3

V(K,nG) are the spectroscopic parameters

2.2.4. Symmetrized Basis Functions

In the spherical tensor formalism.The basis set of vibra
tion–rotation functions is constructed within this framework
using the formulae

C C,n
~R! 5 ~C ~ J! 3 C ~l !! C,n

~R! [25]

where C ( J) is the rotational wavefunction for the angu
momentum quantum numberJ, C (l ) is the vibrational wave-
function treated as a spherical tensor of rankl , wherel is the
vibrational angular momentum quantum number; the qua
numberR is running fromuJ 2 l u to J 1 l , the indicesC and
n are used to designate the octahedral components o
spherical tensor of rankR, C being the symmetry of th
octahedral component andn the running index used to numb
theC symmetry components which belong to the tensor s
of rank R. The ground state and fundamental state of thn3

mode are uniquely distinguished by the quantum numbl
which is equal to 0 in the ground state (vibrational symm
G 5 A1g) and to 1 in thev3 5 1 state (vibrational symmet
G 5 F 1u).

In the cubic tensor formalism.In this framework the vi
bration–rotation functions are built with the same schem
vibration–rotation operators. In the case of the ground st

C ~C! 5 C r
~ J,nrCr5C! z C 3

~ A1g! [26]

TAB
Correspondence between O
Copyright © 2000 by
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and in the case ofv3 5 1 state:

C ~C! 5 ~C r
~ J,nrCr! 3 C 3

~F1u!! ~C!. [27]

The basis functionsCC,n
(R) of thespherical constructioncan be

expressed as

C C,n
~R! 5 Î2R 1 1

@C# O
nr,Cr

K ~G nrCr nC!
~l J R! ~C r

~ J,nrCr! 3 C 3
~G!! ~C!, [28]

where the coefficientK is called anisoscalar factorof the
chain of groupsO(3) . Oh and can be found for instance
(15).

A summary of the formulae for the basic sets of power
perators and vibration–rotation wavefunctions is present
able 2 for spherical tensor coupling and for cubic symm
roup coupling.

.2.5. Matrix Elements

In the spherical tensor formalism.The matrix elements o
he power operators are calculated by using in this frame
he Wigner–Eckart theorem and theF coefficients, first com
uted by Moret-Bailly (7),

^J, v, l , R, C, nuO $V,K,L,k,i %uJ9, v9, l 9, R9, C9, n9&

5 PRkR9 z ~21! R z F Cn, A1gi ,C9n9
R,k,R9 dJJ9 z dCC9

3 ^Ji5 V~K!i J& z ^vl iA ~L!iv9l 9& z H L K k
l J R
l 9 J R9

J ,

[29]

where )RkR9 5 =(2R 1 1) z (2k 1 1) z (2R9 1 1), and
FCn,A1g i ,C9n9

R,k,R9 is anF coefficient,

2
and Oh Coupling Schemes
LE
(3)
Academic Press
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198 ACEF ET AL.
^Ji5 i J& 5 @ J~ J 1 1!#

3 F K!

~2K 2 1!!!

~2J 1 K 1 1!!

~2J 2 K!! G 1/ 2Y 2K,
[30]

nd ^vl iA(L)iv9l 9& are, respectively, the reduced matrix e-
ments of the rotational and vibrational operators. The com
program, used in this work, is written in such a way tha
gives the possibility of conducting the calculations ofF coef-
ficients, reduced matrix elements, and 9–j symbols for arbi
trary values of quantum numbers and ranksL, K, and k of
power operators. The only limitation is the specification of
computer that imposes an appropriate limitation to the dim
sions of the matrices where theF coefficients are stored.

In the cubic tensor formalism.The matrix element of th
vibration–rotation operator is diagonal inJ and C quantum
numbers and reads in the cubic formalism as:

^J, nr, Cr; F1u
; C, suT3,3

V~K,nG!uJ, n9rC9r; F1u
; Cs&

5 2~21! J1KK ~nG n9rC9r nrCr!
~K J J! ~21! G1C1C9rSF1u C9r C

Cr F1u GD
3 @G# 21/ 2^JiRV~K!i J&.

[31]

he reduced matrix elements of the rotational operator
rst given in (16)

^JiRV~K!i J& 5 @24J~ J 1 1!/Î3# ~V2K!/ 2

3 F K!

~2K 2 1!!!

~2J 1 K 1 1!!

~2J 2 K!! G 1/ 2 @32#

and S z z z
z z z D are 6C symbols which can be found f

nstance in (15).

2.3. Correspondence between the Two Formalisms

The formulae for the matrix elements of the basic powe
perators have been used to calculate the matrices of the
perators for the vibration–rotation states with quantum n
ersv3 5 0, 1 andJ 5 0, 1, 2, 3. The computer progra

Mathematica has been used to expand a given cubic sym
tensor matrix into the linear combination of the appropr
spherical tensor basic matrices. The expansion coeffic
gave us the appropriate correspondence relations betwe
cubic tensor parameters and the spherical tensor parame
the Hamiltonian. We have conducted the calculations fo
operators up to the sixth order.

In Table 3 the calculated correspondence relations bet
tensor and symmetry point group parameters are given
the sixth order inV. We also give in the same table
appropriate values of the cubic tensor parameters calcu
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from the values of the adjusted parameters of the tenth-
spherical tensor Hamiltonian (see Table 5).

FORTRAN programs have been written to convert the s
order set of spherical tensor parameters to the appropriate
cubic tensor parameters and vice versa. A numerical te
these programs has been performed for some sets of para
yielding a complete agreement between the simulated tr
tion frequencies of the sixth-order model Hamiltonians.

3. THE FITTING PROCEDURE

The fitting of the frequencies of spectral lines was condu
using the second-order gradient technique and the Hamilt
within the spherical tensor formalism. The mean-square
ation

S5 O ~nobs2 ncal!
2/s 2 [33]

was taken as the sum of square deviations of the mea
frequencies from the calculated ones over all measured
The deviations were also weighted by the experimental u
tainty s of the measured frequency of the line. The calcul
frequencies are functions of the set of parameters {P} of the
model vibration–rotation Hamiltonian. For a given set {P} the
mean-square deviationS was approximated to second orde
the variations of the parameters {dP}

S5 S0 1
S

Pi
z dPi 1

1

2
z

 2S

PiPj
z dPi z dPj 1 . . . . [34]

The matrixCi , j 5  2S/PiPj of second derivatives and t
vector Fi 5 2S/Pi have been calculated numerically a
the iterative formulae

Pi :5 Pi 1 O
j

~Ĉ21! i , j z Fj [35]

ave been applied to find the minimum ofS. The eigenvalue
f the matrix C have been analyzed to distinguish betw

saddle points and the real minima ofS. The analysis of th
eigenvalues of theC matrix at the minimum ofS made i
possible to reveal numerically the correlations between
parameters. Here we say that the parameters are correl
we can express their variations via the variation along a d
tion x as

dPi 5 aidx, [36]

whereai are the direction cosines, and if, along the directiox,
the first derivativeS/ x and the second derivative 2S/ x2

are equal to zero. It means that by an appropriate small ch
of the parameters one can change the model Hamilto
leaving the mean-square deviation unchanged. Some co
Academic Press
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TABLE 3
Correspondence between Oh and O(3) Parameters up to Sixth Order

Note.The parameters marked by an asterisk have been fixed to zero.
Copyright © 2000 by Academic Press
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tions arise owing to the contact transformation invariance17).
hese correlations were confirmed numerically in the cour

he fittings. To break the correlations, some parameters o
odel Hamiltonian were strictly fixed to zero according
able 3 of Ref. (18).

.1. Fifth-Order Fit: Correlations between Parameters an
Convergence of the Power Expansion

The above fitting procedure was applied to fit the set of
bserved in (1) with the fifth-order expansion of the Hamilt
ian. The corrected parameters of the fifth-order Hamilto
re given in Table 4. This fit yielded a standard deviatio
bout 80 kHz, to be compared with the fit of Paper I which
standard deviation of 172 kHz when all lines were inclu
In the course of the fitting a strong correlation between

alues of the ground state rotational constantB0, of the Co-
iolis interaction constantz, and the band frequency origin

the n3 mode was found. The second derivative ofS along the
ppropriate direction was found to be not exactly equal to
ut was so small that it resulted in rather big confide

ntervals of the above molecular parameters.

TAB
Correspondence between the Adjusted Parameters of the F

Note.The third column gives the corrected values. (Only the 136 line
zero.
Copyright © 2000 by
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In the frame of the first-order Hamiltonian the correla
etween the values of the ground state rotational constan
oriolis interaction constant, and the band origin frequenc

he n3 mode follows from the spherical symmetry of
Hamiltonian. The spherical symmetry of the first-order H
iltonian and the spherical symmetry of the dipole interactio
the n3 band with the resonant radiation results in the app-
mate selection rule for the vibration–rotation transitions
fundamentaln3 band (1),

DR 5 0; DC 5 0; Dn 5 0, [37]

which seriously restricts the number of strong transitions
as a consequence leads to the main ambiguity in the resto
of the parameters of the model vibration–rotation Hamilto
from the frequencies of such transitions.

To explain the existence of the correlation between
values of the ground state rotational constant, the Co
interaction constant, and the band frequency of then3 band, le

s consider the contributions of appropriate terms of the v

4
-Order Hamiltonian and the Parameters Used in Paper I

ed in I were included the fit.) The parameters marked by an asterisk w
LE
ifth

s us
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201n3 BAND OF SF6
tion–rotation Hamiltonian to the frequency of aDR 5 0
transition. The harmonic oscillator term has the form

Hh.o. 5 P3
0,0,0,0,1z O0,0,0,0,15 t 3,3

0~0,A1! z T3,3
0~0,A1! [38]

in the frameworks of the spherical tensor and of the c
tensor formalisms, respectively. The rigid-rotor and the Co
lis interaction terms are

H r.r. 5 P0
2,0,0,0,1z RA1,1

2~0! 5 t 0
2~0,A1! z T0

2~0,A1! [39]

HC.i. 5 P3
1,1,1,0,1z O1,1,1,0,15 t 3,3

1~1,F1! z T3,3
1~1,F1!. [40]

The derivation of the matrix elements in the cubic ten
formalism yields the following results

^v3 5 0uT0
2~0,A1!uv3 5 0& 5 J0~ J0 1 1! [41]

with R0 5 J0

^v3 5 1uT0
2~0,A1!uv3 5 1& 5 J9~ J9 1 1! [42]

^v3 5 1uT3,3
0~0,A1!uv3 5 1& 5 1 [43]

^v3 5 1uT3,3
1~1,F1!uv3 5 1& , J9~ J9 1 1! 2 R9~R9 1 1! 2 2.

[44]

The allowed transitions areDR 5 0 f R9 5 R0 5 J0 and
this results for each operator in the following contribution
the frequency:

f~T0
2~0,A1!! 5 J9~ J9 1 1! 2 R9~R9 1 1! [45]

f~T3,3
0~0,A1!! 5 1 [46]

f~T3,3
1~1,F1!! , J9~ J9 1 1! 2 R9~R9 1 1! 2 2. [47]

So it is easy to see that the contributions to the frequenci
the DR 5 0 transitions are not independent.

The correlation between the values of the ground
rotational constant, the Coriolis interaction constant, and
band origin frequency ofn3 band will be changed if high
order terms are taken into account. The conclusion o
numerical analysis is that the higher order terms do not de
this correlation completely but give a tiny increase of
second-order derivative of the mean-square deviation alon
direction of correlation.

The second observation in the course of preliminary c
puter calculations was that the ordering scheme of Hamilto
parameters does not follow the geometrical progression
the increase of the power of the rotational operatorsV. This
Copyright © 2000 by
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progression was expected from the analysis of the param
of the third-order Hamiltonian. The decrease of the Ham
nian parameter with increasingV is mainly governed by th
ratio e 2 5 B/v, whereB is the rotational constant andv is the
characteristic vibrational frequency. TakingB 5 0.1 cm21 and
the lowest vibrational frequencyv 5 350 cm21, we get an
estimate ofe2 5 1/3500. This is in a good agreement with
observed ordering up toV 5 3 with an ordering paramet
e2 ; 1/3000. One could expect that the parameters of thev3 5
1 state might be on the order of 3z 10212 cm21 in the case o
V 5 4 and on the order of 10215 cm21 in the case ofV 5 5, but
our fitting confirmed the results obtained in (1) that the param
eters withV 5 5 are appreciably higher in order of magnitu

nd some even higher in the case ofV 5 4.
We see two reasons why the ordering scheme of mole

arameters can be broken whenV $ 4. First, there is th
undamental question of the contribution of nonadiabatic
eractions between electronic, vibrational, and rotationa
rees of freedom of a molecules. As was pointed out in
13), the nonadiabatic terms can give an appreciable con
ion to the Hamiltonian terms of order higher than three.

Second, thev3 5 1 state is not well isolated. Owing to t
Coriolis splitting ofJ level intoR 5 J 2 1, R 5 J, andR 5
J 1 1 sublevels, the last of these is coming into resonance
the n2 1 n6 vibrational state with increasingJ, while the firs
is coming into resonance with then5 1 n6 vibrational state
One could expect that the avoided crossing will be atJ values
of about 200. So, a slow convergence of the effective Ha
tonian could be expected in the highJ region of thev3 5 1 state
vibration–rotation spectrum. One can expect that the ord
parameterk of the power expansion of Hamiltonian in this c
must correspond to the critical value ofJcrit ' 200 ask ;
1/Jcrit ' 5 z 1023. This value is in a good agreement with
ordering of the parameters of the tenth-order Hamilto
whenV . 4.

The fifth-order Hamiltonian with the corrected parame
was then used to calculate the frequencies of all lines pres
in Table 1. For the lines with highJ values we observed b
differences between measured and calculated frequencie
differences reach 10 MHz atJ values of about 90 for som
lines and have a decreasing magnitude with the decreasJ
values. It demonstrates that the fifth-order Hamiltonian is
adequately precise in the region of highJ values to calculat
the frequencies of the observed rotational transitions of thn3

band of SF6 with an accuracy of a few kilohertz.

3.2. Tenth-Order Hamiltonian

The model Hamiltonian in the framework of the spher
tensor formalism was expanded up to higher orders inV. It
was found that the tenth-order Hamiltonian is accu
enough to fit all the measured frequencies. It was also f
that there are very strong correlations between the par
ters of the ground state Hamiltonian and those of thev3 5
Academic Press
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TABLE 5
Values of the 52 Adjusted Parameters of the Tenth-Order Hamiltonian

Note.The parameters of the ground vibrational state were fixed. The parameters marked by an asterisk were fixed to zero.P(5) gives the value of the parame
btained by fitting of the 136 lines of paper I with the fifth order Hamiltonian.

Copyright © 2000 by Academic Press
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203n3 BAND OF SF6
1 state Hamiltonian. These correlations were again a
uted to the fact that onlyDR 5 0 transition frequencie

ere measured in the experiment. Thus it was not pos
o make unambiguous conclusions about the orde
cheme of the Hamiltonian of the ground vibrational s
hich is free of resonances with any combination vibra
tate. In the case of the ground state Hamiltonian it wou
ossible to trace the contribution of the nonadiabatic te
t this point we cut the expansion of the ground s
amiltonian at the fourth order inV and fixed all the
arameters to the most reliable values known from litera
p to date (see the recent papers (19 –22)). Unfortunately IR

high-resolution spectroscopy is not free from the disad
tage that concerns the correlation of the ground vibra
state parameters and the excited vibration state param
due to the contact transformation invariance of the Ha
tonian and to the lack of comprehensive information
forbidden transitions. The most straightforward and reli
way to get unambiguous data on the rotation paramete
the ground vibrational state of SF6 might be magnetic dipo
spectroscopy of rotational transitions in the ground vi
tional state (23, 24).

TABLE 5
Copyright © 2000 by
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The results of the fitting obtained with fixed parame
or the ground state Hamiltonian and thev3 5 1 state

Hamiltonian expanded to tenth order inV in the frame of th
spherical tensor formalism are presented in Tables 1 a
The values of the parameters were not rounded in a
dance with the common rules to the digit which correspo
to the order of magnitude of the standard deviation (SD
the parameter. In our case we see that the standard dev
of a parameter defined mainly by the correlations betw
the large number of parameters and the common roun
procedure would yield values too rough for the parame
We intentionally present unrounded values in order
everyone to be able to use our parameters to simulat
frequencies of vibration–rotation transitions of then3 fun-
damental band with an accuracy estimated here to 40 kH
to J ; 100. Also wehope that it will be possible in the ne
future to measure the high-resolution spectra of the
called forbidden (DR Þ 0) vibration–rotation transitions
the n3 fundamental band and thus to break the correlat
between spectroscopic parameters. In this case the
rounded values would be very useful as the starting poin
the subsequent refinement of the parameters.

ontinued
—C
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4. CONCLUSIONS

This paper presents a very complete set of accurate e
mental data for then3 band of SF6: 321 frequencies of theP,
Q, andR branches withJ values ranging from 3 to 96 ha
been measured with an accuracy of a few kilohertz (unf
nately limited in some cases by the unresolved hyperfine s
ture and by the hyperfine coupling within superfine clust
To achieve an analysis of such a set of data, we have fou
necessary to expand the Hamiltonian up to the tenth order
is because of the slow convergence of the power expans
the Hamiltonian in the range of highJ values. It is the first tim
that an expansion is performed to that order. This expan
has been done using two different tensorial formalisms
first one through tensor coupling algebra inO(3) and the
second one inOh. These two expressions of the Hamilton
have been compared analytically. The relations between
sets of parameters are given up to sixth order. They have
been compared numerically and this comparison gives re
which do not differ by more than the precision of comput
Thanks to the analytical comparison, the risk of error in wri
the operators is very small and thanks to the numerical
parison, the risk of error in the programmation of the calc
is almost zero. Even if the comparisons have been perfo
only to sixth order (Table 3), the FORTRAN program pa
ages have been developed for both formalisms so as to pr
an expansion up to any order. The expressions of the m
elements are written independently of the order. As a co
quence the quality of the analyzed data and of the model
us to state that the predicted frequencies (over 40 000 all
lines for J , 100) arevery accurate. In the past, every ti
that a new predicted line was measured the agreemen
better than 40 kHz even for the highestJ values. These pr
dicted frequencies can be used as frequency referenc
spectral regions where frequency measurements are la
and will be sent upon request to anyone interested. T
results will be especially useful to predict intensities an
model the band absorption. Indeed, the SF6 molecule is now
used extensively in industry as an isolator (in transform
high voltage cables, etc.) and this molecule has been de
in the atmosphere. The increase of its concentration (dou
every 10 years) is such that it has become essential to follo
evolution. On the other hand, our results can be used for fu
studies of the Born–Oppenheimer approximation or of in
acting bands such asn3 with n2 1 n6 or n3 with n5 1 n6.

The hyperfine and superfine structures of all the lines
ented here has been recorded and compared with theory5, 6)
ith a very good quantitative agreement (except, as ment

n the introduction, for the differential saturation effects in
nresolved structures, in which case only a qualitative a
ent could be obtained with the predictions of the weak-

heory). These structures will be displayed in a future pub
ion.
Copyright © 2000 by
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With the technology and equipment available today to
crease the tunability of CO2 lasers, it is possible to record a
line in this n3 band spectrum with subkilohertz resolution
to perform an absolute frequency measurement of any
hyperfine components with a few hertz accuracy, the
limitation being the time that one is willing to spend on
project. But now, the main direction of progress to achieve
initial goal to test the Hamiltonian and to obtain physical ra
than effective constants would be a better knowledge o
ground vibrational state. This could be achieved throu
measurement of forbidden lines or even through a direct s
of rotational magnetic dipole transitions (23, 24) induced by a

icrowave field with optical preparation and detection of
opulations in a molecular beam.
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