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Abstract 

The exact solution for a two-level atom interacting with a laser field in a gravitational field is given. The modifications 
due to a weak gravitational field are discussed and some applications are proposed. 

1. Introduction 

Since any quantum optical experiment in the laboratory is actually made in a noninertial frame it is important 

to estimate the influence of the earth’s acceleration on the outcome of these experiments. Here we treat the 
influence of acceleration on a two-level atom interacting with a monochromatic laser field. Thereby we present 

the exact solution to this problem and we discuss some special cases and implications. 

We show how the Rabi oscillations which usually depend on the interaction energy, the detuning, the wave 

vector of the laser beam and on the momentum of the atom, change in the presence of acceleration. For 

practical purposes these concepts are essential for an exact description of atomic beam interferometry [I] 
and any effects of two-level systems travelling through strong laser fields [2] in the presence of gravitational 

fields. Our formalism should be also applicable to atoms submitted to laser pulses in optomagnetic [3,4] or 

gravitational traps [ 51. 
Our result describes the evolution of a two-level system interacting with a laser beam in the presence of a 

gravitational field. The Rabi oscillations as well as the population transfer will be modified by the gravitational 
field. The oscillations increase in time and the population transfer decreases. To some extend the present effect 
is similar to the effect of a frequency chirped laser interacting with a two-level atom, discussed by Horwitz 
[ 61, and to the motion of an atom in a laser beam with curved wave front [ 71. 
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2. Basic equations 

We start with the Schrodinger equation for a two-level atom, 

ilidw’, t) -= 
at 

-$+Ho+Hd(r,t) +H,(r) (1) 

With the rotating wave approximation 

Hd(r, t) = -fifi$,, 
( 

0 e-i(ot--k.r+qfJ) 
ei(or-k.r+4) 

> 0 ’ 
(3) 

Hg( r) = -mg . r, (4) 

where & and E, are the upper and lower energy level of the atom, rn is the mass of the atom and g is the earth’s 

acceleration. .&a = (e/2@ I(aldElb)l is the Rabi frequency whereby for simplicity we assumed nondegenerate 
levels a and b and considered only a scalar electric dipole interaction. w, k and 4 are the frequency, the 
wave vector, and a constant phase of the laser beam. We assume that the energy levels E, and & are not 

modified by the gravitational field or during acceleration. We neglect any relaxation effects like finite lifetimes 

and dephasing. This two-level description of our atoms can also be applied to three-level systems excited by 

two laser fields in the case of an intermediate nonresonant state out of resonance, e.g. Raman two-photon 

excitations, or to two-level systems interacting with a standing wave, because in these cases one can write an 

effective Hamiltonian which has the above form. 
In order to remove the time-dependence wt + qA in the dipole interaction term, we make the transformation 

ti(r, t) := e- i(ot+$)cr3/2 P (r, t) and get 

iW+(r, t> = [H(r,p^) - $liwa~ + H, + H~(r)l+(r, t>, (5) 

with 

Hi(r, t) = Hi(r) = -fif& ( e-%r eilr) . (6) 

3. The exact solution 

We write (5) explicitly in two-component notation 

i&$@O = 
IF2 

-%A& + E&, - mg. & - fi&,e-ik’r$b + iti&, 

apply a modified Fourier transformation which includes the wave vector k, 

Ua) 

(7b) 

(8a) 

(8b) 

1 
$b(r, t> = ~ 

(27r)3/2 s 
ei(K+k)‘r ub( K, t) d3K, 

&(r,t) =&/@“a,(K,t)d’K 
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and get two partial differential equations in momentum space, 

The next step is to make the transformation 

fi2(K+k)2 + /i2K2 

2m 
z+E,+& 

(94 

(9b) 

(10) 

which removes the mean free energy. The additional transformation 

Z(K,t) =exp{i[i(K+ ik) .gt2 - (m/6h)g2t3]}Zi(K,t) 

removes parts of the acceleration terms. We end up with the coupled equations 

(a, + y ’ &) ;;b = -i&,Y(K)iib + iflbak 

(I?, + 7 * &) ii, = i&,y( K)& + i&&, 

(11) 

(124 

(12b) 

with y(K) = ( 1/2@o) [ (hk/2m) - (2K + k) - A] where A = w - Wba is the detuning. The above equations 
have the form of a vector-valued evolution equation, 

kt’a$( K, t) = ifib, -y(K) 1 
1 Y(K) > 

c(K, t), (13) 

with M” = 1,M’ H M = (mg/Fi),do = &,a, H VK. From M” we can define a curve P(r) = ( K+&,67) 

so that AP = (d/dT)C@(T). Defining Z(7) := ii(K + (mg/!i) r,r we have a system of ordinary differential ) 
equations, 

d, 
d,U( 7) = ifib 

-y(K) - kg - k~ 1 

1 y(K) + ;g. kr 
Z(r). (14) 

Introducing a new parameter A := eiri4[ (2L?bOy( K)/fi) + &ET], and &b(n) := - eiri4( fiba/&g)iib( A) 
(for notational simplicity we write kg instead of k . g) this gives 

d&(A) 

(15a) 

dh - $%I(~) + ii/,(A) = 0. (15b) 

Comparison with the recursion relation of the parabolic cylinder functions [ 81 shows that 

&l(A) =&+~(A)bol(K), 

&2(A) = D-p-2(-iA)ba2(K), 

&l(A) = &(WOI(K), 

&.(A) = D-,-I(--iA)bdK). 

(lea) 

(16b) 

(16~) 

(16d) 
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where p + 1 = -i( L&,/kg) are the solutions of (15a), ( 15b). The initial state is represented by &,I,~( K). 
Tracing the definitions back the solution is then given by 

$(r,t) = -L 
(27T)3/2 s ,il~+(n,g/ri)rlx,-ci/R)E,(r) 

X 
e’“‘4eik”[-(~l~~nh,)o-.(h)bol(K) + (~,,/~>o,-,(-iA)b02(K)l 

D-,-I(A)~oI(W +D,(-i~>bo2(W 
(17) 

with 

E,(t) = 
l?K2 
2mt + ifi(K+ ik) .gt* + img2t3 + M26,ytK)t + (E, + ifh)t, (18) 

(19) 

The functions bat,2( K) can be determined by the initial value of the wave function. We finally end up with the 

general solution 

$(r, t) = L- 
(27T)3/2 s ,iIK+(nlg/h.)rl~re -(i/@E#(r) eim/* ( eiir y) (c :) (~~~~~) d3K, (20) 

with 

A := %D,.-I(--iA)D_._l(Ao) + D_,(A)D,(-iAo), (21a) 

B := e-i?r/4 &a -_[D,-I(-iA)D-,(Ao) - D-,(A)D,-I(-iAo)l, 
v% 

C ;= eirrf4 ~ s[D,(-iA)D-u_l(Ao) - D_,_l(A)Dv(-iho)], 

(2lb) 

(21c) 

D := ~D-v-~(A)D,_~(-iAo) +D,(-iA)D_,(Ao) (21d) 

(A0 = 2ei”‘4(f&a/&g)y(K)). For t + 0 we recover the identity transformation. The off-diagonal elements 

are scaled with &,/fi. This means that for abnb, + 0 (vanishing influence of the laser beam) or kg + cc 

(strong gravitational field) the Rabi oscillations die out. 

The variable A can be rewritten as 

A = eiTi4 2 .n,, -y(K) f&t 
Gi 

=2ei”14- Obnb, v(K + (mg/h)t). 
VE? 

(22) 

Therefore A essentially represents the parameter y(K) with time-dependent momentum fiK changing according 
to the classical law. In addition, A = 0, or equivalently, 

k. (23) 

can be given a physical interpretation: (23) is fulfilled for that moment t, when the gravitational induced 

Doppler shift k - gt cancels the Doppler shift from the initial velocity va = fiK/m, the recoil shift iZk2/2m, and 
the detuning A. From the viewpoint of the Rabi oscillations this is the “turning point” of the motion of the 

atom in the gravitational field. (The time t, of the classical turning point is given by (for an initial momentum 
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y = 0, k.g = 0.5 

1 

h 
y = 0. k.g = 1.5 

y = 1, k.g = 0.5 

y = 1, k.g = 1.5 

0.6 

t 

Fig. 1. Rabi oscillations for different values of y and k *g (for &, = 1). 

K directing antiparallel to the acceleration g) fiK/rn = gt,.) At that moment the Rabi frequency is minimal 
and the population inversion maximal. After and before that moment the Rabi frequency increases and the 
amplitudes [#J* and l$bl* decrease. 

Fig. 1 presents features of the solution for an initial state a,( K,O) = 0, ub( K, 0) = S3( K - Ko), that is, for 

an initially fully occupied upper level with initial momentum Ko. The upper curve (starting at 1) is IA(t) I* and 
describes the occupation of the level b, the lower curve (starting at 0) is IC( t) I* and shows the occupation of 

the lower level. The two diagrams on the left are for y = 0 and g = 0.5 and 1.5; the two diagrams on the right 
are for the same g-values but for y = 1. The population transfer is best for y = 0 and f = 0 which represents 
the “turning point” of the evolution of the two-level system. The amplitudes of the oscillations are smaller 

for larger values of y and decrease more rapidly for larger accelerations. For increasing time the oscillations 
decrease and freeze at a specific value (see below). The instantaneous frequency of the oscillations increases 
with time. 

If one assumes an initial plane wave with momentum Ka, that is, 601,2(K) = (Y~,~S~(K - Ko), then the 
resulting wave functions can be easily obtained by integration. Operating with the momentum operator on these 
functions, we get 

&b(r,t) = Ko+k+~~)~dx,t), > &7/,(x, t). (24) 

This means that the momentum of plane waves changes with the acceleration according to the classical law. 
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The above solution (20) is also valid if we replace fib, by some step function &n(t) = f$#(t - tj ) or 
by a pulse with rectangular shape fib,(r) = $a( 8( t - tl > - O( t - t2) ) for t:! > t1. This can be proven to 

be very general: We insert into our solution (20), which is differentiable in fiba, a time-dependent &,(t> 
defining a function $0(r) (t, x). This is the usual way to an adiabatic treatment of time-dependent effects. The 

time evolution of the fields (Cln(,) (t, X) for a short time interval t, t + 6t is given by 

(25) 

+ncr)(t,n) is still a solution of the original equation with 0 replaced by n(t) if the second term vanishes 

which is the case if L?(t) N 0(t). Therefore, our solution (20) is valid also for rectangular time-profiles. For 
all other cases, for example for Gaussian time profiles of the laser pulse, this is not true. 

4. Discussion 

4.1. Strong gravitational$eld or vanishing laser beam 

Now we treat g -+ co, or more exactly, gk -+ co which gives the same results as fib0 --f 0. In these cases 

we have to consider D*,(z) and DkV_l (z ) for v + 0 and any value of z. We get 

A = ~~D-IC-~A)D-I(AOJ +Do(A)Do(Ao) -+ Do(A) 

B = e-i?r/4 ‘ba -[D_l(-iA)Do(Ao) - Do(A)D-I( --to, 
d% 

c = ein/4 &a 
-]-D-I(A +Do(-iA)D-t(Ao)l +O, 
v% 

D = $D_I(A)D_I(AO) + Do(-iAt)Do(Ao) + Do(-iA)Do(Ao). 

With the explicit representation of D,(z) for integer n (see Ref. [ 81) we arrive with ( 18) at 

(264 

(26b) 

(26~) 

(26d) 

1 
@(x,r) + - 

(27r)3/2 

s( 
,i[K+k+(mg/fi)rlv 0 

)( 

e-(i/fOEb(K+k,O 
X 

0 eiIK+(mg/h)rl~r 0 e-(i/zEe(X.r)) (~~~~~) d3Ka (27) 

with ,!&( K, t) = (h2/2m)K2 + ili(K + k) . gt2 + gmg2t3 + (Eb,o 7 +&u)t. This describes the free fall of a 

two-level system in a uniform gravitational field. 

4.2. Long-time asymptotics 

We consider t -+ co, that is, ]A] + 00. For the moment we restrict to &,, y, and kg > 0 so that arg( A) = br 

and arg( -iA) = - $rr. We can apply [ 83 

D,,(z) =e 
_J/4 z” 1 - p’;t, l) + otz-9) . (28) 



C. Liimmerzahl, CJ. Bon&!/ Physics Letters A 203 (1995) 59-67 65 

I 
2 4 6 8 10 

k.g 

Fig. 2. The ratio 7) as function of k . g for different values of y (for fib, = 1). 

We take the limits of the modulus of A and C for large t which remains constant: the population of the 
two-level system freezes with increasing time. If for t = 0 the level b was fully populated and level a was 

empty, we have for the ratio 77 of the population for t -+ 00 

(29) 

This asymptotic expansion is valid for ]z I > IpI, that is, for t > [L&J< kg)3/2] and t > l/G. For fib, N lo6 
s-’ and kg N 10 6 s -* this means t >> lo3 s. The ratio grows for increasing values of kg as can be seen in Fig. 
2 where we have shown v( kg) for different values of y. 

4.3. Weak gravitationaljeld 

We consider now the case of a weak gravitational field g + 0 whereby the last condition can be replaced by 
kg -+ 0 because only this combination is relevant for the two-level system. We get the first modification of the 

Rabi oscillations induced by the gravitational acceleration g. 

In this case the modulus of the argument as well as of the parameter of the parabolic cylinder functions 
tend to infinity: We need an expansion of D, (z ) for the case I z 1 + cm and IpI -+ oc. Such an expansion for 
complex parameters and complex variables has been given in Ref. [ 91. Using this result we have for IA] -+ cc 

and Ip] -+ 00 

D,(A) N gp 
1 -rZ%5 I + L K3 - 6~ 

(K2 - 1)1/4 e P24(K2 -2)3/z +..* ’ 

with 

p2=2p+1, 

K= &-q 

gp = 2 
~~2/4~1/4e-CL2/4~~212~112( 1 _ l/24P + . . .). 

(30) 

(31) 

(32) 

(33) 

(34) 
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The advantage of this kind of approximation is that the amplitude and the phase represented by 6 are treated 
separately. During the lengthy calculations one has to take care of the various branch cuts by taking the square 

root and the logarithm. The phase gives to first order the gravitationally modified Rabi phase 

(35) 

The corresponding modified instantaneous Rabi frequency R = (d/dt)&( t) = J&,,dm + i (y/dm) 
x kgt increases with time. This effect can also be seen in Fig. 1. The relative correction of the usual Rabi 

frequency is 60 = i [y/( 1 + Y2)] (kg/f&) t. For typical values k N lo6 m-l, @,n,, N lo7 SK’, y N 1, and 
an interaction time of the atom with the laser beam within an atom beam interferometer t - 10e3 s we have 

&fi - lo-‘. This is well within the accuracy of present-day apparatus. It is remarkable that one gets the same 

result by expanding the usual formula for the Rabi frequency in the case that one treats the atomic motion 

classically and the interaction in the atomic rest frame with a transformed phase for the electric field. 
Taking the amplitude into account, we get as result for the various parts of the evolution matrix 

A=cos&(~) -i ’ 

( 

Y 

JiG 
-a(t)(l+Y2)2 sin&(t), 

B=i Ji.+a(r)(]$), 
( ) 

ff(t) 
sinoR - 1 +y2 

a(t) Y2 
cos’R(f)+ 4 (1 +?2)3/2 

Sin f&(t), (36b) 

c=i &+a(r)(l;;2)2 
( ) 

ff(r) 
sinfiR( 1 +y2 

a(r) Y2 
cosoR(t)- 4 (1 +y2)3/2 

Sin&(t), (36~) 

D=cos&(t) +i J$ -Q’(r) (1 lyT)2 sinfiR( 

with a(t) = (kg/d@,,) t. For kg + 0 we recover the exact result for the Rabi oscillations in gravity-free space. 

5. Outlook 

Starting from our exact solution some phenomena may be treated theoretically in future. For example the 
effect of the laser beam splitters in atom beam interferometry may be treated in an exact manner for square 
pulses [ 10,111. Since atom beam interferometry is very sensitive to the influence of acceleration it is necessary 
to have exact results for the beam splitters in gravitational fields in order to be able to interpret the results of 

such experiments in a proper way. The results of the present Letter can also be applied to an exact description of 
dynamical neutron diffraction in the presence of gravitational fields, which has importance for the interpretation 
of the COW experiment [ 12,131. 

Also the abnormal behaviour of matter waves in periodic external potentials which has been explored for 
neutrons in crystal lattices by Zeilinger et al. [ 141 leading e.g. to negative effective mass tensors, can now be 
treated in an exact manner. It is of course not necessary to use gravity as external force. Electromagnetic forces 
acting upon charged or neutral objects (atoms, molecules) with electric or magnetic dipole can be used as well. 

Also Marzlin and Audretsch [ 151 (see also Ref. [ 161) treated the same problem, but in an operator 
formalism, and arrived at similar results. 
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