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We studied stimulated resonance Raman transitions between hyperfine sublevels of the ground electronic
state X1S01g(v 5 0, J 5 13) of I2 . Resonances narrower than 10 kHz (HWHM) were obtained. A detailed
theoretical and experimental analysis of the line shape is presented. The pressure broadening of Raman reso-
nances was found to be 7 6 1 kHz/mTorr. The role of the beam divergence was investigated and shown to yield
only a small broadening but some asymmetry of the lines. In the transit-time limit the theory predicts that
the slow molecules should play a dominant role, as in saturation spectroscopy. Our experimental conditions
are very close to that regime, and we discuss the improvements that should be made in order to reach it in
future experiments. Finally, six hyperfine splittings of the ground state of I2 were determined with a 0.2-kHz
accuracy. © 1996 Optical Society of America.
1. INTRODUCTION

Stimulated resonance Raman (SRR) processes have been
widely used for high-precision spectroscopy of atoms and
molecules,1 especially when the levels of interest are
metastable. Because of the long lifetime of these levels,
one can obtain extremely narrow SRR resonances, which
are of great interest both for spectroscopic and metrologi-
cal applications.2 When the metastable levels are hyper-
fine sublevels of the same ground electronic state with a
frequency interval of a few hundred megahertz, it is pos-
sible to use only one laser and an acousto-optic modulator
(AOM) to obtain two laser beams with proper frequencies
and to avoid the laser frequency jitter problem. Thanks
to this simplification, it should be much easier to obtain
subkilohertz SRR resonances. There is a close analogy
between the SRR interaction of a three-level system with
two laser beams at frequencies n1 , n2 and the interaction
of the two ground-level hyperfine states with a microwave
radiation at the frequency n1–n2 . Owing to this analogy,
our experiment has some common features with optical-
microwave double resonance,3 but it provides a better
signal-to-noise ratio and uses a simpler experimental
setup. This analogy becomes rigorous when the concept
of effective Hamiltonian may be used.1 This is the case
when either the detuning from the intermediate level or
the relaxation constant of this level is much larger than
its other evolution frequencies. In this case the interme-
diate level can be eliminated adiabatically. In our case
the Doppler shift associated with the intermediate level is
usually larger than the two previous quantities, and there
is no equivalent two-level system. Furthermore, the
Doppler broadening, which is small but finite for the mi-
crowave transition, can be completely eliminated for the
0740-3224/96/0901837-12$10.00
SRR transition. Numerous theoretical papers have been
written on line shapes in spectroscopy of three-level sys-
tems, taking into account only relaxation decay rates and
the first-order Doppler effect.4 Generalized expressions
of the susceptibility applicable to all nonlinear processes
were given in Refs. 5 and 6. In this paper we extend
these previous line-shape calculations to include transit-
time effects in the case of SRR spectroscopy. These cal-
culations are based on the diagrammatic representation
of the density-matrix equations described in Ref. 7 and
follow closely earlier derivations of the Doppler-free two-
photon line shape8 and the saturated absorption line
shape.9 This technique provides a set of computation
rules associated with a double time-ordered Feynman dia-
gram representing a given process. It includes all effects
resulting from the molecular motion and especially
transit-time effects that become dominant at the highest
resolution. Indeed, we find that in the transit-time
broadening limit the SRR resonance has a double-
exponential line shape with a sharp top. As in the case of
saturated absorption, this phenomenon can be explained
by a slow-velocity-selection effect.9,10 Such a line shape
was already found in the case of Doppler-free two-photon
spectroscopy8 and was also pointed out in the case of SRR
spectroscopy by Thomas et al.,11 taking into account only
the transverse Gaussian amplitude profile of the beams at
a given point along the propagation axis. As far as the
divergence of the laser beam is concerned, the behavior of
SRR resonances differs strongly from the case of satu-
rated absorption. We show that the SRR resonance
probes the local size of the laser beam and is relatively in-
sensitive to the beam divergence or to wave-front distor-
tions by cell windows. So, with a beam diameter of the
order of 1 cm in a low-pressure gas cell, one could obtain
© 1996 Optical Society of America
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subkilohertz SRR resonances useful both for high-
precision spectroscopy and metrology.
In this paper we illustrate this great potentiality of

SRR spectroscopy by its application to the study of hyper-
fine structure of the ground electronic state of I2 . We ob-
served SRR transitions between hyperfine sublevels of
the ground electronic state X1S01g (v 5 0, J 5 13) of
this molecule. Resonances narrower than 10 kHz
(HWHM) were obtained. We measured six hyperfine
transitions with a 0. 2-kHz accuracy. A pressure broad-
ening of the SRR transitions equal to 7 6 1 kHz/mTorr
was found and interpreted in terms of relevant relaxation
constants. To test the small influence of the laser beams’
divergence and to check our line-shape calculations, a
specific experiment was made with a beam divergence
angle as large as 0.5°. The results of the calculations
show a remarkable quantitative agreement with the ex-
periment.

2. EXPERIMENTAL SETUP AND RESULTS
Figure 1 shows the diagram of hyperfine sublevels in
which a SRR transition is induced by two radiations at
the frequencies n1 and n2 . The sublevels of interest are
the same as in the case of crossover resonances with a

Fig. 1. Schematic representation of the SRR interaction process
involving hyperfine sublevels of the X (v 5 0, J 5 13) state in
iodine.
common upper level b.12 The experimental setup is
shown in Fig. 2. The laser beam at the frequency n2 is
provided by a monomode Ar1 laser. The beam at the fre-
quency n1 is generated from the previous one by two
acousto-optic modulators. In order to reduce the beams’
misalignment introduced by the frequency modulation
and by the frequency scanning of n1 , we use the acousto-
optic modulator AOM2 in a double-pass geometry. The
acousto-optic modulator AOM1 provides the optical isola-
tion of the laser from backscattering and increases the
range of available detunings. The perpendicularly polar-
ized beams at frequencies n1 and n2 are recombined in a
Glan prism. To reduce the errors induced by the relative
misalignment of laser beams and to decrease the transit-
time broadening of resonances, we use an expansion of
the laser beams up to a radius w0 . 1 cm. The I2 pres-
sure in the 50-cm-long cell is controlled by the thermosta-
bilization of the cell cold finger. Our signals are detected
by monitoring the unmodulated laser beam at the fre-
quency n2 , which is resonant with the weak transition
(DF 5 0). To reduce the influence of technical ampli-
tude noise of the laser, we use the usual differential de-
tection method. First-derivative-type resonance signals
are obtained by FM modulation ( fmod 5 5 kHz) with the
AOM2 generator followed by phase-sensitive detection.
For avoiding background signals coming from intensity
changes associated with frequency modulation and fre-
quency scanning, the laser beam at the frequency n1 is re-
jected by a second Glan prism. The laser frequency is
locked to a strong hyperfine component (DF 5 DJ) of I2
close to the weak-transition frequency. Generally, this
detuning is smaller than 20 MHz. In the case of the
(5, 10)→ (5, 9) transition (see Table 1) used for most line-
shape studies, this detuning was much smaller. In this
case we used a frequency-stabilization scheme with a
saturation beam frequency shifted in comparison to the
probe laser beam in the reference iodine cell. Using the
hyperfine component a2 for laser frequency stabilization
with a 172.4-MHz blue-shifted saturation beam, we tuned
Fig. 2. Schematic representation of the experimental setup: RF, radio frequency; LF, low-frequency generator; PD’s; photodiodes.
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the laser frequency to the (J9 5 13, F9 5 9, «9
5 5) → (J8 5 12, F8 5 9, «8 5 5) weak transition.
Only a minor modification of our previous laser-
frequency-stabilization scheme13 was necessary in order
to obtain this blue shift by means of AOM’s.
Figure 3 shows a typical signal corresponding to the

SRR transition between the hyperfine sublevels (« 5 5,
F 5 10) and (« 5 5, F 5 9). The recording was made
under the conditions that we usually had for the line-
center measurements: The I2 pressure was 2 mTorr; the
powers of the laser beams in the cell were 4 and 8 mW at
frequencies n1 and n2 , respectively, with a beam-waist ra-
dius equal to 0.5 cm; the amplitude of the frequency
modulation was 10 kHz.
To measure the pressure broadening of the SRR reso-

nances, we increased the pressure of I2 from 0.3 to 60
mTorr. The resonance shapes were fitted by Lorentzian
derivatives whose widths were extrapolated to vanishing
laser power and amplitude of the modulation. Figure 4
presents the resonance half-width ga8a/2p versus the
pressure of I2 . We found a linear dependence of ga8a/2p
with the iodine pressure. The slope coefficient is equal to

d~ga8a/2p!/dPI2
5 761 kHz/mTorr.

This result, when compared with those obtained in Ref.
14 for the population decay rate d(ga/2p)/dPI2

5 561
kHz/mTorr (for an I2 pressure > 30 mTorr), is consistent
with a rather small influence of the dephasing collisions
on this type of transition in iodine molecules.
The half-width of the narrowest resonance, which we

obtained, is ga8a/2p > 8 kHz [Fig. 5(a)] under the follow-
ing conditions: iodine pressure, 0.2 mTorr, amplitude
of the modulation, 3 kHz; laser power in the cell, ; 4
mW (w0 ' 1 cm). This value may be explained by a re-
sidual misalignment of the laser beams and, more prob-
ably, by a small uncontrolled amount of foreign gas in the
cell. Under these conditions the absorption coefficient in
the 50-cm-long cell corresponding to the SRR process was
measured to be 0.5 3 1026.
We used SRR spectroscopy for the measurement of

transition frequencies in the state X (v 5 0, J 5 13) of
I2 . According to the possibilities of our AOM’s, six tran-
sitions could be studied. In Table 1 we compare our re-
sults with those of Yokozeki and Muenter,3 which were
obtained in a molecular-beam double-resonance experi-
ment. The agreement between the values is better than

Table 1. Stimulated Resonance Raman
Transitions between Hyperfine Sublevels

in the X (v 5 0, J 5 13) State of I2

«8, F8 → «9, F9 Results of Ref. 3 (kHz)a Our Result (kHz)a

5, 13→5, 14 75 377.5(2)
5, 11→5, 12 87 249.1(2)
5, 15→5, 14 100 892.7(4) 100 892.4(2)
3, 15→3, 14 212 479.3(4) 212 479.0(2)
5, 13→5, 12 218 699.0(4) 218 699.0(2)
5, 10→5, 9 228 679.1(1) 228 679.2(2)

aNumbers in parentheses are estimated reproducibilities in units of 0.1
kHz.
1 kHz and illustrates the accuracy of our measurements.
Within the accuracy of our experiment we did not find any
pressure shift of the SRR resonances.
To illustrate the small influence of the beam diver-

gence, we recorded the line shape of the SRR resonance
with a beam expander out of focus. Figure 6 presents the
line shapes of the SRR resonance with beam divergence
angles u equal to 0.43° (curve a), 0° (curve b), and 20.5°
(curve c). The I2 pressure in the cell was 0.3 mTorr.
The solid curves (Fig. 6) are the results of line-shape cal-
culations. The calculated line shapes, as well as the ex-
perimental ones, show an asymmetry but no significant
broadening (the usual saturated absorption resonance
broadening under these conditions is equal to 2.5 MHz).
The small difference between the experimental and the
theoretical line shapes may be explained by the frequency
modulation that was used for phase-sensitive detection
and by the fact that, for such a big divergence
(u . 0.5°), one should take into account the change of the
transverse geometry of the beam along the propagation
axis inside the cell.

Fig. 3. SRR resonance between hyperfine sublevels (« 5 5,
F 5 10) and (« 5 5, F 5 9). The lock-in amplifier time con-
stant was 0.1 s. The solid curve is the first derivative of a pure
Lorentzian with a half-width equal to 30 kHz.

Fig. 4. Half-width of the SRR resonance fitted by a Lorentzian
derivative versus iodine pressure in the cell. The solid line rep-
resents ga8a/2p 5 13.6 kHz 1 7.08 kHz/mTorr 3 PI2

(result of
a linear regression). The experimental values of the resonance
half-widths at pressures greater than 35 mTorr were obtained
without a telescope.
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Because iodine is a very heavy molecule, it is difficult to
observe transit-time effects with a laser-beam radius of
the order of 1 cm. Under the conditions of the narrowest
resonance [see Fig. 5(a)], a 0.5-cm-diameter aperture was
installed in the 2-cm-diameter beam, and the power of the
laser beam in the cell was reduced to 0.4 mW. Figure 5
(curve b) shows the first-derivative line shape of the SRR
resonance thus obtained, compared with the first deriva-
tive of a pure Lorentzian with a half-width (HWHM)
equal to 14 kHz (solid curve). The transit-time broaden-
ing of the SRR resonance can be observed but without any
other essential change of the line shape.

Fig. 5. Curve a, Narrowest SRR resonance recorded under the
following conditions: iodine pressure PI2

' 0.2 mTorr, power of
the laser beams approximately 4 mW, beam diameter 2w0 5 2
cm, time constant equal to 3 s, and accumulation of nine 150-s
sweeps. The solid curve is the first derivative of a pure Lorent-
zian with a half-width of ' 8 kHz. Curve b, Line shape of the
resonance with a 0.5-cm-diameter aperture and a power density
Il,2 ' 0.1 mW/cm2 (time constant equal to 3 s, accumulation of
thirty 150-s sweeps). The solid curve is the first derivative of a
pure Lorentzian with a half-width equal to 14 kHz.

Fig. 6. Line shapes of the SRR resonances with beam diver-
gence angles u equal to (curve a) 0.43°, (curve b) 0, and (curve c)
20.5°; the solid curves are the results of the line-shape calcula-
tion with ga8a/2p 5 15 kHz.
3. THEORETICAL ANALYSIS: LINE-SHAPE
DERIVATION FOR STIMULATED
RESONANCE RAMAN SPECTROSCOPY
In this paper we limit ourselves to the three-level system
that is shown in Fig. 1. It is well known (see Table 1 of
Ref. 6) that, for copropagating waves under quasi-
resonance conditions, the signal for such a system con-
sists of three Doppler-free contributions: (1) a satura-
tion signal involving the population in the intermediate
level b, (2) a Raman term involving the off-diagonal ma-
trix elements of the two lower states as the intermediate
step, and (3) a dynamical Stark effect. In the present
case, at the highest resolution, the first contribution gives
rise to a broad, weak signal, and we discuss it only in the
context of pressure broadening of our resonances at high
pressure, when ga , ga8 . gb. Under usual experimental
conditions, its size, compared with the Raman signal,
is roughly in the ratio of the relaxation constants gaa8/
gba . 0.1. In the present experiments this ratio is fur-
ther squared in the case of first-derivative signals. The
third term (dynamical Stark effect) is proportional to k1
2 k2 and is completely negligible here.
The complete line shape is derived in the appendix with

the diagrammatic representation of the density-matrix
equations described in Ref. 7. As mentioned earlier, this
technique provides a set of computation rules associated
with a double time-ordered Feynman diagram or a
density-matrix diagram representing a given process. It
includes all effects resulting from the molecular motion:
transit effects through the beam geometry U(x, y, z) in-
cluding beam curvature, first- and second-order Doppler
effects, and recoil shifts (d 5 \k2/2M). In addition, it
takes into account the relaxation mechanisms through
decay rates (gab ) and velocity-changing collisions as well
as various aspects of the interaction physics, polarization
and frequency modulation of the laser beam, and, at
higher order, light shifts and power broadening. Finally,
it is easy to introduce a general molecular phase space
distribution F(x, y, z, vx, vy, vz).
Taking into account the saturation and Raman contri-

butions, the final result for the absorbed power per unit
length is [see Eqs. (A15), (A18), and (A34) in Appendix A]

dW/dz 5 2~na
~0 !/ga!\v2~2Ap/ku !S~z !PVI~D!,

(3.1)

where the various quantities are defined in Appendix A:
n a
(0) is the lower-state equilibrium population, S(z) is a

geometrical factor, and PV is the product of four Rabi fre-
quencies. When summed over Zeeman sublevels, this
last product gives an angular factor analogous to that of
the corresponding crossover resonance given in Ref. 12.
The line shape I(D) is given by

I~D! 5 Re E
0

1`

dtE
0

1`

dt8 exp@~iD 2 2gba!t#

3 $exp~2gbt8!/~1 1 Asu
2t82 1 2Bsu

2tt8

1 Csu
2t 2! 1 exp@~iD 2 ga8a!t8#/~1 1 ARu

2t82

1 2BRu
2tt8 1 CRu

2t 2!%, (3.2)

with D 5 (v1 2 v2) 2 va8a. The first term of the sum



Bordé et al. Vol. 13, No. 9 /September 1996 /J. Opt. Soc. Am. B 1841
in the integral corresponds to the saturation signal (two
single-photon steps with copropagating waves), and the
second term corresponds to the Raman (folded two-
photon) signal. The saturation signal has exactly the
same form as in the case of counterpropagating waves ex-
cept for the definition of the detuning D. Introducing the
exponential integral function E1 , the line shape may also
be written as a single integral:

I~D! 5 1/~2u2!ImXE
0

1`

dt$gb@exp~ZS2!E1~ZS2!

2 exp~ZS1!E1~ZS1!#/~ASYS! 1 ~gaa8 2 iD!

3 @exp~ZR2!E1~ZR2!

2 exp~ZR1!E1~ZR1!#/~ARYR!%

3 exp@~iD 2 2gba!t#C , (3.3)

where

ZS1,R1 5 XS,R 1 iYS,R ,

ZS2,R2 5 XS,R 2 iYS,R ,

XS 5 gbt~BS /AS!,

XR 5 t~gaa8 2 iD!~BR /AR!,

YS 5 gb /~uAAS!A1 1 DSu
2t2,

YR 5 ~gaa8 2 iD!@1/~uAAR!#A1 1 DRu
2t2,

DS,R 5 CS,R 2 BS,R
2 /AS,R .

In Eqs. (3.2) and (3.3) the influence of the laser beams’ ge-
ometry comes through the coefficients AS,R , BS,R , CS,R ,
and DS,R . Using Eq. (3.3), one can calculate the line
shape for an arbitrary geometry of the laser beams (dif-
ferent positions of the waists and different values of the
confocal parameters), taking into account both saturation
and Raman terms. For matched beams (w01 5 w02
5 w0 , z01 5 z02 5 z0 , and b1 5 b2 5 b) we have
l1 5 l2 5 l and

AS 5 AR 5
l 1 l*

2
5

1

w2~z !
5 A,

BS 5 BR 5 l* 5
1

w2~z !
S 1 2 2i

z 2 z0

b D 5 B,

CS 5 CR 5 2l* 5 C,

DS 5 DR 5
1

w0
2 5 D. (3.4)

In this case, the line shape (3.2) becomes

I~D! 5 Re E
0

1`

dtE
0

1`

dt8 exp@~iD 2 2gba!t#

3
exp~ 2 gbt8! 1 exp@~iD 2 ga8a!t8#

1 1 Au2t82 1 2Bu2tt8 1 Cu2t 2 . (3.5)

Close to the beam waist (z 2 z0 ! b),
1 1 Au2t82 1 2Bu2tt8 1 Cu2t2

> 1 1
t82 1 2tt8 1 2t2

ttr
2 , (3.6)

with 1/ttr
2 5 (u/w0)

2 5 Au2.
It is also possible to derive the line shape corresponding

to a misalignment between the laser beams considered as
plane waves:

U1~r! 5 1, U2~r! 5 exp~2kxx !. (3.7)

A simple calculation along the lines of Appendix A
gives

I~D! 5
1

2gba 2 ga8a

Ap

kxu
ReFwS D 1 iga8a

kxu
D

2wS D 1 2igba

kxu
D G

1
1
gb

Ap

kxu
ReFwS D 1 2igba

kxu
D G , (3.8)

where w(z) 5 exp(2z2)erfc(2iz) is the error function of
complex arguments. The first term corresponds to the
Raman diagram and the second one to the saturation dia-
gram. Unfortunately, no simple line shape includes both
the Gaussian structure of the beams and their misalign-
ment.
In the high-pressure limit, ga , ga8 . gb , and one needs

to take into account both contributions in Eqs. (3.5) and
(3.8). In these conditions, transit-time effects are negli-
gible with usual laser beams (w0 ; millimeters). If 1/ttr ,
uAA, uAB, kxu ! gba , gb , ga8a , the denominator of Eq.
(3.5) is '1; the Voigt profiles in Eq. (3.8) reduce to Lorent-
zian shapes, and both Eqs. (3.5) and (3.8) for the line
shape simplify to

I~D! 5
2gba

~2gba!2 1 D2 S 1gb
2

1
2gba 2 ga8a

D
1

ga8a

ga8a
2

1 D2

1
2gba 2 ga8a

, (3.9)

Fig. 7. Peak-to-peak width of the calculated line shape gp2p
(gp2p 5 d)/2, where d is the interval between the maximum
and the minimum of the derivative) versus K 5 gb/ga for three
values of the phase-mismatch parameter d defined by
gba 5 [1 1 d][gb 1 ga]/2.
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which is the sum of two Lorentzians. When ga8a ! gba ,
the observed signal is a narrow Raman resonance given
by IR(D) ' (1/2gba)@ga8a /(ga8a

2
1 D2)# superimposed on

the weak, broad background of the saturation signal.
But we can check that, in the case where 2gba 5 ga 1 gb
and ga8a 5 ga 5 ga8 (no dephasing collisions), the line
shape given by Eq. (3.9) becomes also a pure Lorentzian
with a half-width equal to ga8a without any condition on
the ratio ga8a/gba. (This corresponds to the possibility to
interchange the two middle vertices in both diagrams of
Appendix A.) We analyzed the peak-to-peak width of the
first derivative of the line shape given by Eq. (3.9) when
dephasing collisions become important. Figure 7 shows
the peak-to-peak width gp–p versus the parameter
K 5 gb/ga for three values of the parameter d defined by
gba 5 (1 1 d)(gb 1 ga)/2. In the case of iodine mol-
ecules, for which gb/ga > 1 for all pressures, the differ-
ence between gp–p and ga8a is smaller than 0.05ga8a even
for a very strong dephasing in the collisions. This analy-
sis shows that our experimental study of the linewidth
versus pressure yields the quantity dga8a /dPI2

to a good
approximation.
One can use expression (3.5) to discuss transit-time ef-

fects in SRR spectroscopy in comparison with usual satu-
ration spectroscopy (with counterpropagating waves),
since the saturation terms have the same structure for co-
propagating waves as for counterpropagating ones. It is
clear that the relative influence of the terms involving, re-
spectively, the coefficients A, B, and C depends critically
on the relaxation rates ga8a and g ba through the range of
possible values for the times t and t 8. In usual satura-
tion spectroscopy, far from the beam waist, the coeffi-
cients C and B play the major role since A decreases as
1/z2 and further multiplies the time t 8, which is not asso-
ciated with the detuning. In SRR spectroscopy, when
gba ,gb @ ga ,ga8,gaa8, first, the contribution of the satu-
ration process (two single photon steps) is sufficiently
small to be neglected; second, in the Raman term, it is
now the coefficient A that plays the major role (the roles

Fig. 8. Results of the line-shape calculations for SRR reso-
nances with matched divergent beams close to our experimental
conditions (u 5 l/pw0 ' 0.5° and w 5 0.5 cm) compared with
nondivergence cases (dashed curves) for three value of ga8a/2p:
5, 15, and 25 kHz.
of the times t and t 8 are interchanged with respect to the
previous case); hence there is a reduced transit-time
broadening since A is determined by the local beam ra-
dius w(z), and there is a reduced asymmetry since the
range of possible values for t is limited by gba in the
2Bu2tt 8 term.
As it was mentioned already, this is precisely the case

of I2 at low pressure. Figure 8 shows the result of the
line-shape calculations for SRR resonances with matched
divergent beams close to our experimental conditions (see
Fig. 6) compared with the case of nondivergent beams.
Calculated line shapes show an asymmetry but very little
associated broadening. The result of the calculation with
gaa8/2p > 15 kHz shows good agreement with the experi-
ment (solid curves in Fig. 6).
If in addition to a low-pressure condition (gba @ ga8a)

the divergence of the matched beams is small, we may
simplify the Raman term in Eq. (3.5) to

IR~D! 5 @1/~2gba!#Re E
0

1`

dt8
exp@~iD 2 ga8a!t8#

1 1 t82/ttr
2

5 ~ttr /4gba!Im$E1@2~iga8a 1 D!ttr#

3 exp@2~iga8a 1 D!ttr# 2 E1@~iga8a 1 D!ttr#

3 exp@~iga8a 1 D!ttr#%, (3.10)

which is the same line shape as in Doppler-free two-
photon spectroscopy.8

Figure 9 shows the result of the line-shape calculations
for ttr . 18 ms (w0 5 0.25 cm and u 5 140 m/s) and
ga8a/2p equal to 0.1, 1, 3, and 10 kHz. For small values
of the parameter h 5 ga8attr , the line shape differs from a
Lorentzian and exhibits a sharp top. The second deriva-
tive of Eq. (3.10) is easily calculated to be

d2IR~D!/dD2 5 2 @ttr
3 /~2gba!#Re(1/@~ga8a 2 iD!ttr#

1 i/2$E1@2~iga8a 1 D!ttr#

3 exp@2~iga8a 1 D!ttr# 2 E1@~iga8a

1 D!ttr#exp@~iga8a 1 D!ttr#%), (3.11)

from which one can show that the peak-to-peak width of
the first derivative is given by 2[(2/p)(ga8a/ttr)]

1/2 in the

Fig. 9. Results of the line-shape calculations with w0 5 0.25
cm and gba/2p 5 100 kHz for ga8a/2p equal to 0.1, 1, 3, and 10
kHz. The sharp top of the line shape is the signature of the in-
fluence of the slow molecules.
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transit regime. The second derivative becomes much
narrower than the line shape itself as h is reduced below
unity.
As in the case of saturated absorption, this phenom-

enon may be explained by a velocity-selection effect.9,10

In the pure transit limit (h ! 1) the line shape becomes a
double exponential:

IR~D! 5 p/4~ttr /gba!exp~ 2 uDuttr!, D > ga8a ,
(3.12)

with a singular second derivative.
The conditions for this selection of slow molecules are

the same as for saturation spectroscopy and are discussed
in detail in Ref. 15: Besides h ! 1, one needs to satisfy
also the condition of low saturation in the experiment,
VRttr ! 1, where VR > VbaVba8/gba is the effective Rabi
frequency for the Raman transition and where Vba,ba8 are
the Rabi angular frequencies of the optical transitions.
Expressions for these Rabi frequencies averaged over Zee-
man sublevels are derived in Appendix A.
Let us give a numerical estimate for the Raman tran-

sition (« 5 5, F 5 10) → (« 5 5, F 5 9) and for a power
of the laser beams equal to ;1 mW with a 1-cm beam ra-
dius: ^Vab

2 &1/2 5 57389 s21, ^Va8b
2 &1/2 5 14774 s21, and

gba 5 2p 3 105 s21 give VR 5 1349 s21 and VRttr
. 0.1.
In the case of a uniform illumination with an intensity

of 1 mW/cm2 over a 0.25-cm-radius diaphragm, the effec-
tive Rabi frequency for the Raman transition is only p/2
higher, while ttr is of the order of 3 or 4 times smaller;
hence there is an even smaller saturation parameter
VRttr . Therefore the laser power used for the experi-
ment of Fig. 5 (curve b) was in a good range for the obser-
vation of line-shape distortions due to slow molecules.
The reason why no significant departure of the line

shape from a pure Lorentzian was observed in our experi-
ments could have two origins a priori:

(1) a slight misalignment of the two beams in the cell;
(2) a higher relaxation rate than expected, possibly ow-

ing to some foreign gas residual pressure, leading to a too
large value of the parameter h.

Fig. 10. First derivatives of calculated line shapes with
w0 5 0.25 cm and gba/2p 5 100 kHz for ga8a/2p equal to 1, 5,
and 7.5 kHz compared with first derivatives of pure Lorentzians
(dashed curves). The difference between the line shape with
ga8a/2p equal to 7.5 kHz and the pure Lorentzian derivative
(half-width equal to 13.8 kHz) could not be observed in our ex-
periment.

Borde et al.
A small angle u between the laser beams at frequencies
n1 and n2 leads to the residual Doppler broadening
kxu ; kuu described by formula (3.8). We estimate that
u should not exceed a few times 1025 rad, in which case
the Doppler broadening can at most be comparable to the
transit-time broadening. Furthermore, if the contribu-
tion of slow molecules is dominant, this residual effect
should also decrease.
Figure 10 shows calculated line shapes for the first de-

rivative of Raman resonances under conditions close to
the experimental ones with ga8a/2p equal to 1, 5, or 7.5
kHz. When compared with the first derivative of a pure
Lorentzian (dashed curves), the calculated line shape for
ga8a/2p equal to 7.5 kHz shows only a small difference
that is difficult to observe with a limited experimental
signal-to-noise ratio. The half-width (HWHM) of the cal-
culated line shape for gp–p/2p 5 13.8 kHz is in good
agreement with the experimentally measured value,
which is 14 kHz.
This analysis is therefore consistent with a value of

h ; 1, which can only be understood as coming from a re-
sidual foreign gas pressure that is still not well enough
controlled in the present stage of the experiment.

4. SUMMARY
As a conclusion, the experimental method presented here
gives the possibility of accurate and independent mea-
surements of the lower-level hyperfine structure of mol-
ecules. As it was shown in Refs. 3 and 13, independent
measurements of the hyperfine interaction constants of
the lower level together with the measurement of the hy-
perfine structure of the X → B transitions improve the
accuracy of the fitting procedure that is used to evaluate
the constants of hyperfine interactions.
The results of the line-shape calculations explain the

main features of the SRR resonances. As far as only the
divergence of the laser beam is concerned, the behavior of
the SRR resonances differs strongly from the case of satu-
rated absorption. The SRR resonances probe the local
size of the laser beam and are relatively insensitive to the
beam divergence or to wave-front distortions by cell win-
dows. In the transit-time broadening limit, i.e., when
u/w @ ga8a, and without beam curvature, the theory pre-
dicts for the SRR resonance a double exponential line
shape with a sharp top. As in the case of saturated ab-
sorption, this phenomenon may be explained by a
velocity-selection effect.9,10 This regime could not quite
be reached in the present experiments, but we have ana-
lyzed the difficulties that should be overcome to reach it:

(1) The filling of the iodine cells appears to be critical,
since the residual foreign gas is presently the main limi-
tation, and requires further efforts.
(2) The parallelism between the beams at frequencies

n1 and n2 in the cell should be better than 1025 rad, and
this point may require some more care in future experi-
ments, although we expect that the enhanced relative
contribution of slow molecules should also reduce the re-
sidual Doppler broadening.

Our estimate of the signal-to-noise ratio shows that,
when these difficulties are solved and with a beam diam-
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eter of the order of 1–2 cm in a low-pressure cell, one
should be able to reach the kilohertz linewidth for SRR
resonances (and possibly beyond with a much longer ef-
fective path in iodine), thus opening useful new perspec-
tives for high-precision spectroscopy and for metrology.

APPENDIX A: EVALUATION OF THE
DENSITY-MATRIX DIAGRAMS
CORRESPONDING TO THE STIMULATED
RAMAN PROCESS AND TO THE
SATURATED ABSORPTION PROCESS
The three diagrams corresponding to the stimulated Ra-
man process, the saturation term, and the dynamical
Stark effect are given in Figs. 11, 12, and 13 with the as-
sociated diagrammatic rules and the same notations as in
Ref. 7.
The two beams propagate along the z axis with wave

vectors k1 and k2 . Both beams are assumed to be Gauss-
ian (TEM00 mode). In this case the complex representa-
tion of the electric field is given by

E 5 E0U~r!exp@i~vt 2 kz 1 w!# (A1)

with

U~r! 5 L~z !expF2L~z !
x2 1 y2

w0
2 G . (A2)

The function

L~z ! 5
1

1 2 2i~z 2 z0!/b
(A3)

is a complex Lorentzian with a total width equal to the
confocal parameter b 5 kw 0

2 (w0 is the radius of the
beam waist located at z0). Then, for any position z, the
waist w(z) and the wave-front radius of curvature R(z)
are given by

Fig. 11. Double time-ordered Feynman diagram for the Raman
process.
L~z ! 5
w0

2

w2~z !
1 i

b
2R~z !

. (A4)

In what follows, the parameters of the two beams are la-
beled by 1 and 2, respectively. The gas in the cell is in
thermodynamic equilibrium, and the velocity distribution
is the usual Maxwell–Boltzmann distribution:

F1~vz! 5 ~1/Apu !exp~2vz
2/u2!, (A5)

F2~v'! 5 ~2v' /u
2!exp~2v'

2 /u2!, (A6)

where u 5 (2kBT/M)1/2 is the most probable velocity.

Fig. 12. Double time-ordered Feynman diagram for the satura-
tion process.

Fig. 13. Double time-ordered Feynman diagram for the dynami-
cal Stark effect.



Bordé et al. Vol. 13, No. 9 /September 1996 /J. Opt. Soc. Am. B 1845
Concerning the stimulated Raman process (Fig. 11),
the power absorbed per unit length for the laser beam 2
(v2) is found to be

dW/dz 5 22na
~0 !PV\v2E d3vF~v!E

2`

1`

dx

3 E
2`

1`

dy Re E
0

1`

dtE
0

1`

dt8E
0

1`

dt 9

3 U2* ~r!U1~r 2 vt!U2@r 2 v~t 1 t8!#

3 U1* @r 2 v~t 1 t8 1 t 9!#exp@ik2vz~t 1 t8!

2 ik1vz~t8 1 t 9!#exp@2iv2t 1 i~v1 2 v2!t8

1 iv1t 9#exp@2~iva8b 1 ga8b!t 2 ~iva8a

1 ga8a!t8 2 ~ivba 1 gba!t 9#, (A7)

where PV 5 (mba8 • E2/2\)(mab • E1/2\)(ma8b • E2/2\)
3 (mba • E1/2\). The integration on vz is performed in the
infinite-Doppler-width limit, and we obtain

dW/dz 5 2na
~0 !\v2~4Ap/ku !PVE

2`

1`

dvx F1~vx!

3 E
2`

1`

dvy F1~vy!E
2`

1`

d xE
2`

1`

dy

3 ReE
0

1`

dtE
0

1`

dt8U2* ~r!U1~r 2 v't!

3 U2@r 2 v'~t 1 t8!#U1* @r 2 v'~2t 1 t8!#

3 exp@~iD 2 2gba!t#exp@~iD 2 ga8a!t8#,

(A8)

where (v1 2 v2)vba8/v2 2 va8a is approximated by the
frequency detuning D 5 (v1 2 v2) 2 va8a. In this ex-
pression the longitudinal transit-time effect is neglected,
and v is replaced by v' in the functions U1 and U2 . The
cylindrical symmetry of Gaussian beams allows us to
choose coordinates such that vx 5 v' and vy 5 0. We
find

dW/dz 5 2na
~0 !PV\v2~4Ap/ku !L~z !E

0

1`

dv'F2~v'!

3 E
2`

1`

dxE
2`

1`

dyReE
0

1`

dtE
0

1`

dt8

3 exp@2l2* ~x2 1 y2!#exp$2l1@~x 2 v't!2

1 y2#%exp(2l2$@x 2 v'~t 1 t8!#2 1 y2%)

3 exp(2l1* $@x 2 v'~2t 1 t8!#2 1 y2%)

3 exp@~iD 2 2gba!t#exp@~iD 2 ga8a!t8#,

(A9)

with L(z) 5 L1(z)L1* (z)L2(z)L2* (z), l1 5 L1(z)/w 01
2 , and

l2 5 L2(z)/w 02
2 . The integrations on x and y give the ex-

pression
dW/dz 5 2na
~0 !PV\v2~2Ap/ku !S~z !E

0

1`

dv'F2~v'!

3 ReE
0

1`

dtE
0

1`

dt8

3 exp@2v'
2 ~ARt82 1 2BRtt8 1 CRt 2!#

3 exp@~iD 2 2gba!t#exp@~iD 2 ga8a!t8#,

(A10)

where S(z) 5 pL(z)/[1/w 1
2(z) 1 1/w 2

2(z)]. The coeffi-
cients AR , BR , and CR depend only upon the beam geom-
etry:

AR 5
~l1 1 l2* !~l1* 1 l2!

l1 1 l2* 1 l1* 1 l2
, (A11)

BR 5
l1* ~l1 1 l2* ! 1 l2* ~l1* 1 l2!

l1 1 l2* 1 l1* 1 l2
, (A12)

CR 5
~l1 1 l2!~l1* 1 l2* ! 1 4l1* l2*

l1 1 l2* 1 l1* 1 l2
. (A13)

We also use the quantity DR :

DR 5 CR 2 BR
2 /AR . (A14)

The integration over t 8 would give the line shape for each
transverse velocity class v' as a Fourier transform over t
as in Ref. 9. This form is interesting to display the inho-
mogeneous character of the line shape, with the narrow-
est contributions coming from the slow molecules.
On the other hand, the integration on v' gives

dW/dz 5 2na
~0 !PV\v2~2Ap/ku !S~z !ReE

0

1`

dt

3 E
0

1`

dt8 exp@~iD 2 2gba!t#

3 exp@~iD 2 ga8a!t8#/~1 1 ARu
2t82

1 2BRu
2tt8 1 CRu

2t2!. (A15)

The integration on t8 gives

dW/dz 5 2na
~0 !PV\v2~2Ap/ku !S~z !Im~ga8a

2 iD!/~2ARu
2!E

0

1`

dt exp@~iD 2 2gba!t#

3 @exp~ZR2!E1~ZR2!

2 exp~ZR1!E1~ZR1!#/YR , (A16)

where E1 is the exponential integral function and

ZR1 5 XR 1 iYR ,

ZR2 5 XR 2 iYR ,

XR 5 t~ga8a 2 iD!BR /AR ,

YR 5 ~ga8a 2 iD![1/~uAAR!]A1 1 DRu
2t 2.
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The diagram corresponding to the saturated absorption
process with copropagating beams is given in Fig. 12, and
the power absorbed per unit length for laser beam 2 at v2
is

dW/dz 5 22na
~0 !PV\v2E d3vF~v!E

2`

1`

d xE
2`

1`

dy

3 Re E
0

1`

dtE
0

1`

dt8E
0

1`

dt 9U2* ~r!U2~r

2 vt!U1@r 2 v~t 1 t8!#U1* @r 2 v~t 1 t8

1 t 9!#exp~ik2vzt 2 ik1vzt9!exp~2iv2t

1 iv1t9!exp@2~iva8b 2 id 1 ga8b!t 2 gbt8

2 ~ivba 1 id 1 gba!t 9#. (A17)

Following the same calculation as in the case of the
stimulated Raman process, an expression similar to Eq.
(A15) is obtained:

dW/dz 5 2na
~0 !PV\v2~2Ap/ku !S~z !Re E

0

1`

dt

3 E
0

1`

dt8exp@~iD 2 2gba!t#

3 exp~2gbt8!/~1 1 ASu
2t82

1 2Bsu
2tt8 1 CSu

2t 2!. (A18)

The geometrical coefficients AS , BS , and CS are given by

AS 5
~l1 1 l1* !~l2* 1 l2!

l1 1 l2* 1 l1* 1 l2
, (A19)

BS 5
l1* ~l2 1 l2* ! 1 l2* ~l1* 1 l1!

l1 1 l2* 1 l1* 1 l2
, (A20)

CS 5
~l1 1 l2!~l1* 1 l2* ! 1 4l1* l2*

l1 1 l2* 1 l1* 1 l2
, (A21)

and DS is defined by

DS 5 CS 2 BS
2 /AS . (A22)

Finally, the integration on t 8 gives

dW/dz 5 2na
~0 !PV\v2~Ap/ku !S~z !gb /~ASu

2!

3 Im E
0

1`

dt exp@~iD 2 2gba!t#

3 @exp~ZS2!E1~ZS2!

2 exp~ZS1!E1~ZS1!#/YS , (A23)

with

ZS1 5 XS 1 iYS , ZS2 5 XS 2 iYS ,

XS 5 gbtBS /AS , YS 5 gb /~uAAS!A1 1 DSu
2t 2.

The contribution of the dynamical Stark effect given by
Fig. 13 is negligible in the present experiment for which
k1 . k2 .
In the case of degenerate levels the products of four

Rabi frequencies,
PV 5 (
Mb8Ma8MbMa

^bFbMb8um • E2* ua8Fa8Ma8&^aFaMaum

• E1ubFbMb8&^a8Fa8Ma8um • E2ubFbMb&^bFbMbum

• E1* uaFaMa&/~16\4!, (A24)

can be calculated as in Appendix B of Ref. 7 by use of an
irreducible tensor basis in Liouville space. Assuming
well-defined polarizations q1 and q2 for the two fields, one
finds from Eq. (B-10) of Ref. 7 that

PV 5 Aabba8u^bFbimiaFa&u2u^bFbimia8Fa8&u
2

3 E1
2E2

2/~16\4!, (A25)

where the angular factors Aabba8 are given by

Aabba8 5 (
K,Q

~2K 1 1 !

3 SK 1 1

Q 2 q1 q2
D 2H K 1 1

Fb Fa Fa8
J 2
(A26)

in the case of the Raman diagram and

Aabba8 5 ~21 !q11q21Fa1Fa8 (
K50,1,2

~2K 1 1 !

3 SK 1 1

0 2 q1 q1
D SK 1 1

0 2 q2 q2
D

3 H K 1 1

Fa8 Fb Fb
J H K 1 1

Fa Fb Fb
J (A27)

in the case of the saturation diagram.
As expected from expression (A25), these two formulas

are equivalent and give results identical to those obtained
for saturation spectroscopy in the case of crossover reso-
nances with a common upper level. The coefficients
Aabba8 are tabulated in Table 1 of Ref. 12 for the present
experiments with q1 5 0 and q2 5 1, the beam polariza-
tions being, respectively, p and s. For example, with
Fb 5 9, Fa 5 10, and Fa8 5 9: Aabba8 5 0.006842.
The reduced matrix elements of the electric dipole op-

erator are also given in Ref. 12 as

u^Xv9J9«9F9imiBv8J8«8F8&u2 5 me
2u^v8uv9&u2SJ9J8FF9F8

(A28)

with

FF8F9 5 ~2F8 1 1 !~2F9 1 1 !

3 U(
I

a9* ~I, «9, J9, F9!a8~I, «8, J8, F8!

3 H J9 1 J8

F8 I F9
J U2. (A29)

These various quantities are also given in Ref. 12:
• The electronic transition moment me

2 5 0.95
(Debye)2.
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• The Franck–Condon factor u^v8uv9&u2 5 1.779
3 1022 for v8 5 43, v9 5 0; and J8 5 J9 5 14.
• The rotational line strength SJ9J8 equal to J9 for the

P branch and J8 for the R branch.
• The hyperfine factors FF8F9 have to be calculated for

each hyperfine transition. As examples, FF8F9 5 0.7122
for the a7 line (F8 5 9, F9 5 10) and FF8F9 5 0.0472 for
the connected (F8 5 9, F9 5 9)line.
We are now in a position to calculate numerically the

expected signals. An interesting intermediate calcula-
tion is that of the linear absorption coefficient at the cen-
ter of the Doppler profile:

kab 5 nMa

~0 !
1

4p«0

8p 3n

3hc
2Ap

ku
u^bFbimiaFa&u2,

(A30)

where nMa

(0) 5 na
(0)/ga is the population of a Zeeman sub-

level of the lower level a.
This population is given by

nMa

~0 ! 5 ~N/Z !exp@2Ea /~kBT !#,

where N 5 3.2958 3 1022 molecules/m3 for 1 Torr at 293
K and where Z is the partition function:

Z 5 ZvibZrot,nucl .

The vibrational partition function is (with zero energy
for the ground vibrational state)

Zvib 5
1

1 2 exp~2Qvib /T !
(A31)

with Qvib 5 hnvib /kB 5 308.664 K so that Zvib(293 K)
5 1.535.
The rotational partition, taking into account the Fermi-

onic character of the iodine nucleus of spin i 5 5/2, is

Zrot,nucl 5 i~2i 1 1 ! (
J even

~2J 1 1 !

3 exp@2J~J 1 1 !Qr /T# 1 ~i 1 1 !~2i 1 1 !

3 (
J odd

~2J 1 1 !exp@2J~J 1 1 !Qr /T#

. ~2i 1 1 !2
T
2Ur

(A32)

with Ur 5 hcB0/kB50.05368 K so that Zrot,nucl(293 K)
5 98249.
As an example, for the v9 5 0, J9 5 13 levels, the

population nMa

(0) in each Zeeman sublevel of each hyperfine
level is 2.114 3 1017 molecules/m3 for 1 Torr at 293 K.
From Eqs. (A28)–(A32) we find that

kab 5 na
~0 !4p3/2

c

u
a

u^bFbimiaFa&u2

3gae
2 , (A33)

where a 5 e2/4p«0\c is the fine structure constant, is
equal to 1.68 m21 Torr21 for the a7 line at 293 K.
The quantity au^bFbimiaFa&u

2/3gae
2, which is equal to

1.077 3 10224a m2 in this case, plays the role of a cross
section averaged over Zeeman sublevels.
For the associated weak transition (F8 5 9, F9 5 9)
the absorption coefficient is smaller by the ratio of the F
coefficients 0.7122/0.0472 5 15.09, which gives ka8b
5 0.111 m21 Torr21.
The absorption coefficient corresponding to the nonlin-

ear processes (Raman or saturation terms) is now ex-
pressed with the linear absorption coefficient. From ex-
pressions (A15) and (A18) (in which one should also divide
the population n a

(0) by the degeneracy factor ga) we have

kR,S 5 2~2Ap/ku !
na

~0 !

ga
\v2S~z !me

4u^v8uv9&u4

3 SJ9J8
2 FabFa8b Aabba8@E1

2E2
2/~16\4!#IR,S~D!

3 Fc«0E2
2/2E U2U2*dxdy G21

. (A34)

At the beam waist,

kR,S 5 2 FAp

ku

na
~0 !

ga
v2

me
2u^v8uv9&u2SJ9J8Fa8b

3«0\c
G

3 3Aabba8

me
2u^v8uv9&u2SJ9J8FabE1

2

4\2 IR,S~D!

5 2ka8b~9gb Aabba8!^Vab
2 &IR,S~D!, (A35)

where (9gb Aabba8) is an angular factor close to one and
where

^Vab
2 & 5

me
2u^v8uv9&u2SJ9J8Fab

3gb

E1
2

4\2 (A36)

is a Rabi frequency squared averaged over Zeeman sub-
levels.
As an example of interest to our experiment, let us cal-

culate this quantity for the a7 line. Using a laser power
P1 5 (p/4)c«0E 1

2w 1
2 equal to 1 mW, we find ^Vab

2 &1/2

5 57389 s21.
For the Raman signal in the collisional regime we have

IR(0) 5 1/(2gbaga8a). Taking gba 5 2p 3 105 s21 and
ga8a 5 2p 3 8 3 103 s21, corresponding to the 0.2
mTorr pressure, we find a saturation parameter ^V ab

2 &/
(2gbaga8a) 5 5.2 3 1022. For the L 5 50 cm cell, for-
mula (A35) gives an absorption ukRLu 5 0.68 3 1026, in
good agreement with the order of magnitude of the ex-
perimental measurement reported in the text.
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Relativistes, Unité de Recherche Associée au Centre Na-
tional de la Recherche Scientifique 769, Université Pierre
et Marie Curie, Paris, France.
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berian Branch of the Russian Academy of Sciences, No-
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