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Abstract

In the case of an external Hamiltonian at most quadratic in position and momentum operators, we use théokBiGRation
of atom optics to establish an exact analytical phase shift expression for atom interferometers with arbitrary spatial or temporal
beam splitter configurations. This result is expressed in terms of coordinates and momenta of the wave packet centers at the
interaction vertices only.
0 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Recently atom interferometers [1] have been described by the AFGinalism of Gaussian atom optics [2,3]
which yields an exact formulation of phase shifts taking into account the wave packet structure of atom waves.
For the theory of atom interferometers two basic stages are required:

1. A proper description of the propagation of wave packets between the beam splitters;
2. An adequate modelization of the beam splitters themselves.

The first stage is achieved through the ABCheorem whose main results are briefly recalled in Section 2.

The second problem is addressed by the ttt theorem which provides a simple model for the phase introduced by the
splitting process.

In this Letter we give a compact way to express the atom interferometer phase shifts in terms of the coordinates
and momenta of the wave packet centers only. For this purpose we derive two new theorems (the four end-
points theorem and the phase shift formula) valid for a Hamiltonian at most quadratic in position and momentum
operators.
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2. The ABCDé theorem

In this framework we consider a Hamiltonian which is the sum of an internal Hamiltdidgwith eigenvalues
written with rest masses;) and of an external HamiltoniaHey:

1 — = m__, = — — —
Hexi = %POp- 8 (l)-P—o;)) - EQop- 14 (f)~6]_o;))— ﬁ(t)-(fIOp X Pop) —m g (f)~6]_o;)), 1)

where one recognizes several usual gravito-inertial effects: rotatigzn gravity in g (¢), gradient of gravity in
= = . . . I
Y (1),...and whereg (¢) is usually taken equal to the unity tensor in the absence of gravitational wave.

For awave packef (g, r1) = wp(t1, ¢ —q1, p1, X1, Y1), whereg1 is the initial mean position of the wave packet,
p1 its initial mean momentum, and1, Y1) its initial complex width parameters in phase space, one obtains the
ABCD¢ theorem [2]:

w(q,tz)=/d?’q’.K(q,tz,q/,tl)-wp(tl,q/—C11, p1, X1, Y1)

— R S021191.PD) 4y (1 q —q2, p2, X2, Y2), (2

whereK andSg are, respectively, the quantum propagator and the classical action, andgwhereX o, Y2 obey

the ABCD law (G andR are the representative matrices?ﬁ(r} and of the rotation operator corresponding to
ﬁ(t), and we writeA 1 instead ofA (z2, #1) for simplicity):

( g2 ):< Ro1.621 )+<A21 321).< q1 ) @)
p2/m G, Rorén Ca Da pi/m)’

X2\ (A2 B2 X1
(YZ)_<C21 021)'<Y1)' (4)

For example, the phase of a Gaussian wave packet is (for simplicity we shall omit the transpositierosign
matrix representations of vectors):

Sci(t2, 11, q1, p1)/h + p2.(q — g2) /i + ;n—h(q — q2).Re(Y2.X51).(q — 92) (5)

and in this case the main phase shift betwaendr; is equal to:

Sal(t2, 11, q1, p1)/h + p1.q1/h — p2.q2/h. (6)

3. Thettt theorem

When the dispersive nature of a beam splitter is neglected (i.e., the wave packet structure is preserved), its effect
may be summarized by the introduction of both a phase and an amplitude factor (see [13] and [4] for a detailed
proof):

Mpg.e™" @R, 7)

wherer* andg* depend onry andg 4, the mean time and position of the electromagnetic wave used as a beam
splitter.
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For a temporal beam splitter:

t* =1y,

q" =qa(ta),

k* =k,

o =w,

¢* = ¢ (laser phase). (8)

For a spatial beam splitter:

g =qa.
t* such thae (1*) = qa,
k* =k + Sk,
o =w,
9" =9+ 39, 9)

wheregc is the central position of the input atomic wave packet (equal to the classical position because of Ehrenfest
theorem), wherék is the additional momentum transferred to the excited atoms out of resonance, andgisere
a laser phaséyp = —d8k.q4 (see [4]).

Let us emphasize that these calculations do not rely on the assumption that the splitter is infinitely thin or that
the atom trajectories are classical.

4. Thefour end-pointstheorem for a Hamiltonian at most quadratic in position and momentum operators

We shall cut any interferometer into as many slices as there are interactions on either arm and thus obtain several
path pieces (see Section 5). From now on we shall consider systematically pairs of these homologous paths (see
Fig. 1) in the case of a Hamiltonian at most quadratic.

These two classical trajectories are labelled by their corresponding massfim ), their initial position and
momentumdq1, pa1, g1 andpgi) and their common drift tim@ = 1, — 11.

Before establishing the first new theorem let us consider the expression of the classical actiorxfpathe
(see [2]):

Sci(t2, 11, g1, Pal)
My

2 ~ ~
Do~ L AC Pal BD pa1 | pal
=£R.G 1.(A.qa1+B.pa1/ma)+/—dt+qa1.—.qa1+ o P T BCage1, (10)
Me 2 Mg 2 mg Mg
1

where? andL depend org (¢) (see [2] for notations).
This expression can be rewritten as:

SC' (t27 tl’ Qaly pD(l)

My
1 ; 1 1
Pa2 Pal -~ | L -~ | ~ Da2
= . - —. ——&ER.G "R. —dt+ =ER.G . — —&ER.—/ 11
2mg qa2 om, dal 25 E+f ey + 25 qa?2 25 My (11)
1
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Fig. 1. A pair of homologous paths.

with the help of the definition of, > andﬁl—‘f (see formula (3)). Then we can use {h@ath to replacé.R.G 1
with:

ERG =L _cyp DL (12)
mg

mg

Consequently we get:

Sel(t2, 11, ga1, pa1) 1 (paz Pp2
_— - + i
My 2

1
)-QaZ_ —(M + @).qal—l-h(tz, 1)+ f(a, B), (13)
My meg mpg
whereh(tz, t1) is independent of positions and momenta and wifdee 8) = f (8, «). The same conclusion holds
for the expression of¢| (12, 11, g1, pp1)/m g Which is obtained by exchangingandg. Finally, we arrive at the first
new theorem (a more general demonstration starting with Hamilton principal functions is given in Appendix A):

Theorem 1.
Sci(t2, 11, g1, Pe1) 1 Pa2 = Pp2 1/ pa1  pp1
——|—+— )G+ | —+— |91
My 2\ mygy 2\ mgy
Sci(t2, t1, gg1, 1 2 1
_ Seilt2 11, gp1 Pﬂﬂ__(&+Pi>.qﬁ2+_(ﬁ+@>.qﬁl (14)
mg 2\ myg  mg 2\ myg  mg
or equivalently:
Sci(t2, 11, g1, Pal) 2 1 Sci(t2, 11,981, Pp1)  Pp2 PB1
: o Ped) _ pi-qaz + pL-CIal -= ap1. PRY _ il]ﬁz + il}ﬁl
My Ny mey mﬁ mﬁ mﬁ
_ (P2 _Pa2)\ (a2t 4p2 (PpL _ Pall (4ol gp1 (15)
mg My ' 2 mg my ’ 2

which will give the main part of the phase shift expressed with the half sums of the coordinates and the momenta
of the four end-points only.
In the case of identical masses.(= mg) this expression simplifies to:

Sci(t2, 11, Gal, Pa1) — Pa2-9a2 + Pal-Gal — [ Sci(t2, 11, 41, Pp1) — pPp2.4p2 + Pp1-qp1)

2+4qgp2 qal+t4p1
= (pp2— mz)-(%) —(pp1— pﬂ)-(aizﬁ) (16)



Ch. Antoine, Ch.J. Bordé / Physics Letters A 306 (2003) 277-284 281

5. The phase shift formula for a Hamiltonian at most quadratic in position and momentum oper ator s

In this section we draw on the results of previous sections to establish the interferometer phase shift expression
for an arbitrary beam splitters configuration.

For a sequence of pairs of homologous paths (an interferometer geometry) (see Fig. 2) one can infer the general
sum for the main coordinate-dependent part of the global phase shift:

qai + Qﬂz

(q/fil - thl) + Z(kﬂt — kgi)- (17)
i=1
If now we take into account the other terms of the phase shift, we finally obtain the following result (given here

for a Gaussian wave packet):

PBD — PaD 9gaD +4pD\  Pal + Pﬂl
o \1T T 2

Theorem 2.
A¢(g,tn+1=1D)

(981 — qa1)

_ Y4eD + gD h— Pal + DBl
2 2h

= (ppp — PaD)~(q

q +61
+ Z[(kﬂz ki) 2 ot TIPY —(wgi — wui)-ti +@pi — (pai]

i=1
N
megi — Mgi Sai  Paji+l ‘ . Pai + Hkgi . ‘
" Z< 2n ){(mou‘ * 2my; (Gp.i+1 = Gait1) 2y (qpi — qai)
Spi | P+l ‘ ppi + hkgi
+ <m5i + — zmﬂz (Ga,i+1 —qpi+1) — Zmﬂz (qai — qpi)
N p—
—Zﬂh (¢ —qpp)-Re(Yp. X Y).(q — qpp) — (q qgan)-Re(YD.X 1) .(q — qup), (18)
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Fig. 2. Interferometer geometry sliced into pairs of homologous paths between interactions on either arm (when an interaction occurs only on
one arm the correspondirigon the other arm is set 0).



282 Ch. Antoine, Ch.J. Bordé / Physics Letters A 306 (2003) 277-284

This basic formula is valid for a time-dependent Hamiltonian and takes into account all the mass differences
which may occur. It allows to calculate exactly the phase shift for all the interferometer geometries which can
be sliced as above: symmetrical Ramsey—Bordé (Mach—Zehnder), atomic fountain.cloddsthese particular
cases will be detailed in forthcoming papers (see [6]).

Let us point out that the nature (temporal or spatial) of beam splitters leads to different slicing of the paths. In
the spatial case, indeed, the number of differgmhay be twice as great as in the temporal case (see the definition
of +7 in these two different cases in Section 3).

6. Phase shift after spatial integration

In any interferometer one has to integrate spatially the output wave packet over the detection region. With
Gaussian wave packets this integration leads to a mid-point theorem [Bhg]fitst term ofA¢ (¢, tp) disappears
when the spatial integration is performed

Furthermore the terms which depend on the wave packets strudtused X) vanish whermg y = mq N
(which is always the case). One obtains finally:

Pal+ Pp1
2h
N

qui +9
+ E [(kﬁi — kgi). 70” il (wgi — wgi)-ti + @i — ‘Pou'i|
i=1

N
+ Z megi — Mqj Swi + Pai+1 ( 1) — Pai + lkai (98i — Gai)
i=1 2h ’ ; 2 4p.i+1 ~ Gai+l 2myi pi = e

A¢(tp) = — (g1 — qa1)

My My
Spi | Pp.i+l ppi + hkgi
+ (mﬂi + 2m/5 (Ga,i+1 —qp, i+1) — Zmﬁl (qai —qpi) ) -

(19)

7. ldentical masses and symmetrical case

The case of identical masses is an important approximation which is commonly used for the modelization of
many devices like gravimeters and gyrometers [7-9hdf = mg; = m, Vi, this general phase shift becomes:

_ Pal + Pﬂl qui +4q8i

A¢(tp) = 5

(gp1— o) + Z(kﬁ, — kai)-

N
+ Z[‘Pﬁi — @ai — (wpi — wai).1i].  (20)
i=1 i=1

We can also specify the form of this phase shift when the interferometer geometry is symmetrical (see Fig. 3).
This symmetry is expressed &g; + ko; =0, Vi € [2, N — 1], i.e., it is @a symmetry with respect to the direction

of the particular vectorpinitial + fikinitial/2-
Consequently:

qoi T 4q8i

+
> +ky. foN T 46N Z(‘pﬂl Paii)- (21)

N-1
Ap(in) =kiqi+2)  ki.
i=2
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interaction

+ka

Fig. 3. A typical symmetrical interferometer.

ButVi e [1, N — 1]:

Ga,i+1+ 4B+l qoi +4qpi | Bit1i Pei + Ppi
%Z&+Li+Ai+l,i- wi . pi n lm l‘ i . pi
Biy11 hiky
=&111+Air11.91+ ';; -(Pl + 7) = Q0(ti+1) (22)

which can be calculated with the ABGDaw.

It depends only o (“initial position”) and p1 + % (“Bragg initial momentum?).
Therefore:
N N
Ap(tn) =Y (kgi —kai)- Q1)) = Y (9pi — Pai) (23)
i=1 i=1

which has a very simple form when the Bragg conditiari- h—lz‘l =0 is satisfied.

8. Conclusion

In this Letter we have used the ABGDormulation of atom optics and the ttt theorem to establish two theorems
valid for a time-dependent Hamiltonian at most quadratic in position and momentum operators. The first one gives
a compact expression of the action difference between two homologous paths. The second one gives an analytical
expression of the global phase shift for atom interferometers in the case of such a Hamiltonian.

Consequently this analytical expression provides a simple way to calculate exactly the phase shift in this case,
and then one can calculate perturbatively the effect of a higher-order term in the external Hamiltonian (necessary
for space missions like HYPER [10]). For example, one can calculate exactly the global phase shift due to gravity
plus a gradient of gravity plus a rotation, and then calculate perturbatively the effect of a gradient of gradient of
gravity. These calculations and the application to specific cases (gravimeters, gyrometers, atomic clocks, . ..) will
be detailed in a forthcoming article [6] where we recover well-known perturbative results ([5,9,11,12]) from exact
expressions.

Appendix A

In the case of a Hamiltonian at most quadratic in position and momentum operators, the Hamilton principal
functions concerning two pairs of homologous points are also at most quadratic in positions (owing to the
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Hamilton—Jacobi equation, see [2]):

Sa(qa1, qu2) /Mo = a + b.qu1 + €.qu2 + Gu1.d .Go1 + Go1-€.qu2 + qu2. f-qu2, (A.1)
Sp(qp1,qp2)/mp =a+b.qp1+ c.qg2 + qp1.d.qp1+ qp1.e.qp2+ qp2. f-qp2, (A.2)

whereq is a scalarp andc are vectors, and, ¢ and f are matrices (see [2]).
We can defin@q1, pa2, pp1, pg2 such that

1 S,
Pat _ —anl(—a) =—b—2d.qu1 — €.qu2, (A.3)
My My

2 S .
pi = VCIQZ(_Q> =c+2f~‘1a2+e~4al, (A4)
My, My
Pp1 Sp
- =_V — |=-b—-2d. —e.qp2, A.5
g q‘”(mﬁ) qp1—e-qp2 (A.5)
P2 Sg _ -
m_ﬁ = qﬂz(m_ﬂ> =c+2fqp2+eé.qp (A.6)

and obtain the following expression:

S S 1 2 2 1 1 1
Se 2P (pi + pi).(qaz —qp2) — —(pi + pi)-(qal ~ qp1)- (A7)
me mg 2\ mg mg 2\ mg  mg

The same relation holds for the classical action concerning two actual paths with a common drift time
(homologous paths). This yields an other demonstration of the first theorem expressed in Section 4.
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