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Abstract. We show that the language of atom interferometry [1] provides a uni-
fied picture for microwave and optical atomic clocks as well as for gravito-inertial
sensors. The sensitivity and accuracy of these devices, is now such that a new the-
oretical framework [2] common to all these interferometers, is required and which
includes: 1 - A fully quantum mechanical treatment of the atomic motion in free
space and in the presence of a gravitational field (most cold atom interferometric
devices use atoms in “free fall” in a fountain geometry), 2 - An account of simulta-
neous actions of gravitational and electromagnetic fields in the interaction zones,
3 - A second quantization of the matter fields to take into account their fermionic
or bosonic character in order to discuss the role of coherent sources and their noise
properties, 4 - A covariant treatment including spin to evaluate general relativistic
effects. A theoretical description of atomic clocks revisited along these lines, is
presented, using both an exact propagator of atom waves in gravito-inertial fields
[3] and a covariant Dirac equation in the presence of weak gravitational fields [4].
Using this framework, recoil effects, spin-related effects, beam curvature effects,
the sensitivity to gravito-inertial fields and the influence of the coherence of the
atom source can be discussed in the context of present and future atomic clocks
and gravito-inertial sensors.

1. Introduction

The first purpose of these few pages is to clarify the link between atomic
clocks and the recent field of atom interferometry [1] and to show that
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Figure 1.  Rubidium atoms are extracted from a cold Rubidium gas (left) and from a
Bose-Einstein condensate (right). (Courtesy of the University of Munich [7])

indeed, microwave and optical atomic clocks are genuine atom interferome-
ters [2]. The wave character of atoms is getting more and more manifest in
these devices: the recoil energy hd = h2k?/2M is not negligible any more
in Cesium clocks (§/27v ~ 1.5 10716). Atom sources may now be coherent
sources of matter-waves (Bose-Einstein condensates [6, 7], atom lasers or
atomasers [8]) as illustrated in Fig. 1. We have to deal with a very different
picture from that of small clocks carried by classical point particles. The
atomic frame of reference may not be well-defined. In modern microwave
atomic clocks (see Fig. 2) atoms interact twice with an electromagnetic field
(this is the method of separated fields introduced by N. F. Ramsey around
1950) giving rise to interference fringes (Fig. 3), which can now be reinter-
preted as an interference between the de Broglie waves associated with the
external motion of the atoms. Atomic clocks are thus now fully quantum
devices in which both the internal and external degrees of freedom must be
quantized.

Gravitation and inertia play a key role in slow atom clocks. The Einstein
red shift and the second-order Doppler shift may become important and
thus atomic clocks have to be treated also as relativistic devices.

Finally, we recall how the idea of separated e.m. fields in space or time
has been extended to the optical domain in order to build atom interfer-
ometers, which can be used as optical clocks, but also as very sensitive
gravito-inertial sensors.

2. Atom waves

The wave properties of atoms are fully described by a dispersion law relating
the de Broglie frequency to the de Broglie wave vector, which is obtained
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Figure 2. Principle and realization of a fountain clock (courtesy of BNM-LPTF[5])
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Figure 3. Ramsey fringes obtained with the Cesium fountain clock (Courtesy of
BNM-LPTF/5])

from the law connecting the energy E(p’) to the momentum 7 by the
introduction of Planck constant. In free space (Fig. 4) the corresponding
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Figure 4. Energy-momentum curves: (1D cut of the mass shell) hyperbola for a massive
particle e.g. an atom in a given internal energy state and straight lines for photons. The
slope is the group velocity of the de Broglie wave.

curve is the hyperbola of equation:
E(P) =/ M2ct + p*c? (1)

The amplitude of an atom wave may therefore be written generally as:
3
o(F ) = / AE—LP_ il P (P =T 0)-E(—to)l/n
(2rh)%/
5 (E? - EX(P)) 0 (E)a(P, B)
AE__ &p 5 (770 -Bu—to)/h
2E(7D) (2rh)3/?
§(E—E(P))a(P,E) (2)

In the non-relativistic limit:

d3p il (T—=T0)—( Mc2+p2 B
a(7,t) :/We [7( 0)—(Mc2+p?/2M) (¢ to)]/ha(?) 3)

If a(p’) is expanded, for example, in Hermite-Gauss functions,

1 J 2 p Pz
Q\Px, Py, Dz = H <_) o, Y H, <_)
(Pe: Py P2) (2m)3? /AN, lmZ;L "\A, (Ay> A,
2 2 2
o pgj o py _ pz
exp [ QA%] exp [ —ZA?%] exp [ ZAE] (4)

we obtain a complete orthogonal set of free-propagation modes. The low-
est order modes correspond to minimum uncertainty wave packets. These
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free-space propagation modes transform with the same ABCD law as in
Gaussian laser optics. The ABCD matrices are functions of time in this
case and we shall see below how the ABCD law can be generalized in
the presence of gravito-inertial fields. For a travelling wave the § func-

tion can be written ¢ (px — \/ZMEkm —p2 —pg) and we may keep the

kinetic energy Eii,, = E — Mc? instead of p, in the expression of the
modes. This is a good choice if the atom wave is monochromatic, in which
case the integral over energy combines with an amplitude proportional to

d (Exin — Ep). In the paraxial approximation § (px — \/ 2MEyin — pg — pg)

goes into § ( e — 2M Eyip (1 — (p;i —i—pg) /(4MEkm))) and

. 9 2 .
(Y +pz 2
a(T,t) /dpydpza(py,pz) exp lﬁZ\;W—EO (x —x0) + 7 (pyy +pzz)]

exp [%\/ZMEQ (x —x0) — % (M62 + Eo) (t— to)] (5)

The same Hermite-Gauss expansion as above may be used for a(py,p.).
Again the propagation is described by ABCD matrices, which are in this
case functions of x.

3. Interaction of two-level atoms with electromagnetic waves

We shall make a systematic use of energy-momentum diagrams to discuss
the problem of interaction of two-level atoms with two separated field zones
in a Ramsey excitation scheme (Figure 5).
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Figure 5. Illustration of the reinterpretation of the separated field method as the in-
terference between de Broglie waves. Case of successive interactions with copropagating
waves.
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Figure 6. Energy vs transverse momentum in the absorption of a photon by a two-level
atom. A distribution of absorbed frequencies correspond to a distribution of momenta.

E@p)

Y

Figure 7. Energy vs longitudinal momentum in the absorption of a photon by a two-level
atom. When the e.m. is confined in the longitudinal direction, there is a corresponding
distribution of wave vector components in that direction, which allows for a spread of
absorbed frequencies (transit-time broadening or Rabi pedestal) and a change of the
longitudinal momentum of the atom.

Figures 6 and 7 illustrate the energy and momentum conservation be-
tween this two-level atom and effective photons from each travelling wave in
the transverse and longitudinal directions and display the recoil energy, the
first and second-order Doppler shifts and the transit broadening. It is clear
from Fig. 7 that, out of resonance, an additional longitudinal momentum is
transferred to the atoms in the excited state. This velocity change along the
forward direction is the basis for the so-called mechanical reinterpretation
of Ramsey fringes [9, 10, 11, 12, 13]. We will now illustrate this point in
more detail through a simple first-order theory of Ramsey fringes.

Let us consider a beam of two-level atoms with E, <Ej initially in state
a which interacts successively with two field zones respectively centered at
x1 and xo as in Fig. 5 and let us calculate the excited state amplitude
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to first order in each field zone [2, 3]. One can check that the following
expression is indeed a first-order solution of Schroedinger equation:

— 1 t d3 d3k T = —
1) - = / p T ik (T=TT)

BT+ E) =B (7)] (0 —0) /1

P (T =T 0)=Ea(P)(t=t0)l/ 2 (57w (0)y (6)

where the energy is given by the dispersion relation 1 and can be expanded
in a Taylor series:

hk - P (hk)2c
E(p)  2B(P)

hk)?
(hk) +...
2M
(7)
The matrix element of the Hamiltonian of interaction with the e.m.
waves is Vig(7,t) = —Qpae! Gt (7)) where Q, is a Rabi fre-
quency. Let us introduce a monochromatic electromagnetic wave with a
Gaussian distribution of k, (example for the illustration) and, for simplic-
ity, let us ignore the dimension y :

E(P+hk) =E(P)+ 4. =E(P)+hk T+

d3p
27rh)3/2

400 w22 '
/ dkze” 4k elkz(ff*xl)el[w*wbaIkUkazvzfé](t—tl)

bg;l)(?,t) = inaei(ikZWt+¢)2l\;7_r/(

—00

/t dt/e—i[w—wbaqikvz —kgvs—8](t' —t1)
P (7=70)=Ea(P)(t—t0)]/7 ;,(0) (P) (8)

with T, (D) = Ep(P) = Ea(P) = hwpar/1 = v?/c? = huwpa(v) and
aO(7p) = (a|(P'|¥®). In the time integral the upper bound ¢ may be ex-
tended to infinity if the considered wave packet has left the interaction zone
(this is justified in the footnote !, where the exact calculation of reference

The exact calculation gives:

3
b(il) (?)7 t) _ iﬁwaa 6i(iszwt+np) d p ; i
2 (2nh)®/? va

[26—w2<w—ww¢kv2—6)2/4vi (@ —wha Fhv:—8)(@—21)/vs

— w(ip)] ei[?'-(?*?o)fEa(?’)(t*to)]/ha(O)(?) (9)
with p = (z — 1) /wo+1i (W — wea F kv. — 0) wo/2v, and where w(z) is the error function
of complex arguments. The second term vanishes with the distance (x — x1) /wo leaving
the accelerated or decelerated first contribution as the dominant one.
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[12] is recalled). We obtain a ¢ function expressing energy conservation as
expected from the S-matrix:

270 (w — wpe (V) F kv, — kyvy — )

and corresponding to Figures 6 and 7. If the resonance condition w—wpe(v)F
kv, — § = 0 is satisfied in Fig. 6 this implies k, = 0 in Fig. 7, otherwise
the effect of energy conservation is to select a particular component k, =
(W — wpe (V) — kv, —§) /vy .

We obtain the first-order excited state transition amplitude:

~ d3p  wly
b(l) ?7 ) = i ﬂ_ez(:l:kz—wt—l—g@) / a
+ ( ) \/_ (27Th)3/2 Ve

ei(w—wba:Fkvz —8)(z—z1)/va 61‘[?(7’—7’0)—Ea(?)(t—to)]/ha(O) (?)

e—w2 (w—wpe Fkv2 —6)2/41(310)

as the product of the e.m. carrier times a Rabi frequency and a Rabi en-
velope, times an additional momentum phase factor for each initial wave
packet Fourier component. This additional longitudinal momentum is pro-
portional to the detuning and is responsible for the Ramsey fringes, since
de Broglie waves associated with each path have a different wavelength in
the dark zone (Fig. 5) and the transition probability integrated over the
detection volume is:

[ b2T (70 o [ dpuem it (1)

el (@ whaFhz=0) (@2 —21)/v2 4 (0) (p ) (0% (p.)

This Ramsey interference pattern has a blue recoil shift § and is the super-
position of fringe sub-systems corresponding to each velocity class, shifted
by the first-order Doppler effect. If the transverse velocity distribution is
too broad (absence of diaphragm) or in the optical domain, this will blur
out the fringes. To make the connection with atom optics, this superpo-
sition can be rewritten as a correlation function involving the degree of
coherence of the atom source 2:

/dza(o)(z F % (29 — 1) [V, £)a D% (2, 1) (12)

2The degree of transverse coherence of a thermal atom source is given by the density
matrix element: (z,t|p|z’,t") which is simply the free propagator for a “complex time”
argument: ¢t —t' — ih/(kgT) . Its width is the thermal de Broglie wavelength h/Mu and
it gives rise to the Doppler width kpu. Incidentally, an accurate value for the Boltzman
constant could be obtained through the accurate frequency measurement of a Doppler
width.



ATOMIC CLOCKS AND ATOM INTERFEROMETRY 9

b
==

Figure 8. Illustration of the reinterpretation of the separated field method as the interfer-
ence between de Broglie waves. Case of successive interactions with counterpropagating
waves.
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Figure 9. Energy vs transverse momentum exchanges in the case of successive interac-
tions with counterpropagating waves.

Fringes will be obtained as long as hk (z2 — x1) /Muv, is smaller than the
coherence width of the atom source. A second mechanism, which was con-
sidered only recently, is the interaction with oppositely travelling waves in
each zone as in Figs 8 and 9.

This is possible only if the initial wave packet has Fourier components
which differ by 2%k (size of atomic cloud < A¢p,) since:

/dzbgljz(?}, t)bg;)*(?,t) x /dzeﬂikz /dpzdplz exp [i (p. — p.) z/h] ...
a9 (p)adO*(p)) = 6 (p, —pl, £ 2hk) (13)

The resulting signal exhibit fringes with an opposite recoil shift —d. Unlike
the previous one, this signal depends upon the propagation characteristics
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Rubidium clock with a monomode continuous coherent beam

3 Auxiliary Magnetic shield

/5Microwave

Microwave
resonator

Detection of F=1,m=0

- Flux 107 atoms/s (gain of 10/ present fountains)
- Average density 10° atoms/cm? for Ax=50 pm

- Continuous operation

- No losses between rise and fall: Av,=15 um/s

Courtesy of Jean Dalibard
and David Guéry-Odelin

Figure 10.  Schematic view of a possible future fountain clock using the continuous
coherent atom wave source which is being developed at LKB (Paris). The magnetic
mirror is in the strong field regime, in which four magnetic sublevels bounce upwards
(including one connected with F=2, m=0), and the four others are attracted (including
one connected with F=1, m=0). This guarantees a detection on a dark background.

of the incident atom wave:

[T o (7)o e/

) /dpze—i(:l:kvz-l—Qé)(2z0—x2—z1)/vx CL(O) (pz)a((])*(pz + Qhk‘) (14)

This integral is easily calculated for Gaussian wave packets and statistical
mixtures. If the waist position zg of the atom wave is not well-defined (e.g.
in a thermal beam), energy conservation requires kv, = F26 and will not
be satisfied for most velocities (Fig. 9) and this signal will tend to average
out. For a coherent atom wave, if the waist is located at x7, this second
contribution will have the same magnitude as the first one and the overall
recoil shift will cancel [14]. If it is focussed at the midpoint zg = (1 +x2)/2
(perfect time reversal), this signal will be free of Doppler effect and will tend
to dominate and impose its opposite recoil shift. This would be the case,
for example, of a coherent atom wave with a waist at the top of a fountain
clock, which could be achieved in a clock design such as that represented
on Fig. 10.

4. Introduction of gravito-inertial fields

The well-known stationary solution of Schroedinger equation in presence of
a gravitational field involving the Airy function can be applied directly to



ATOMIC CLOCKS AND ATOM INTERFEROMETRY 11

the fountain clock. However, calculations with the Airy function are not so
easy and here, we prefer to take a more general time-dependent approach,
which is mathematically simpler and more powerful. To take gravito-inertial
fields into account in the treatment of fountain clocks and other atom inter-
ferometers, we shall consider quite generally the non-relativistic Schroedinger
equation obtained as the non-relativistic limit of a general relativistic equa-
tion described in the second part of this course:

_ O W(t)) 1 i QW) - (Lo + S
WSt = | Ho+ 5T 9 (0 Fop— O (Lop+ Top)
M
2

— — — = — —
—MG(t) - Top — —Top ¥V (1) - Top + V(Top, t) | [¥(£))(15)
where Hy is an internal atomic Hamiltonian and V(7p,t) some general
interaction Hamiltonian with an external field. Gravito-inertial fields are
represented by the tensors g (t) and 7V (¢) and by the vectors €2 (¢) and
g(t). The same terms can also be used to represent the effect of various

external electromagnetic fields. The operators fop = Top X ?Op and ?Op
are respectively the orbital and spin angular momentum operators. Apart
from in V/(7,p,t) we have limited the dependence of the Hamiltonian to
second-order in the operators ?Op and 7.

The rotation terms are easily removed with a unitary transformation,
which rotates all quantities [3, 15]. The exact propagator of this equation
in the absence of V (7, t) has been derived by introducing a vector E such
that3:

—

pr = -
§=7()-£-g=0 (16)
and the ABCD matrices of Gaussian optics[3, 15]. As an example, for one
space dimension z, the following result (corrected from reference [2]) is
obtained for the wave packet at (z,?) :

exp |5 — )] exp [ [(€/2+962/2 - ge)at
/_ ;OO i ( 27:@\% B) P [(iM/2RB)(D (= — £ — 2(z — €)' + A2?)]
exp [iMuvo(2' — z0) /1] F (2" — 20, X0, Y0)

1S (t,t L M
= e |20 e [0 (o - 20)] FGe - 20 X0 V@) (17
3For simplicity, we have left out the tensor ? (t) in what follows. This tensor is useful

to represent the effect of gravitational waves. The reader interested in keeping this term
is invited to use the more general equation derived in [3].
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Figure 11. Phase shift in a fountain clock

where S(t,tg) = ME(Az + Bug +£) — ]\24 /:(é2 +7€%)dty

M
+7(ACZ§ + DB’U% + 2BCZO'UO)

M [a2
32 lgz (sinh 2z — 2x) + % <v% — 2920 + ’yz%) sinh 2z
gl

+/v0 (—g + v20) sinh? m] (18)
is the classical action, with x = \/y(t — tg) and where

F(z — 29, X0, Y0) = \/LX_(] exp [——(z - zo)ﬂ (19)

is a Gaussian (more generally Hermite-Gaussian) wave packet at the initial
time ¢y in which the central position 2y, the initial velocity vy and the initial
complex width parameters Xy, Yp in phase space, have to be replaced by
their values at time ¢ given by the ABC D¢ transformation law:

z2(t) = Azg+Buvw+¢& ; X(t)=AXo+ BYy
u(t) = Cz+Dw+& 5 Y(t)=CXo+ DYy (20)

In the limit wherey - 0,A=D —1,B —-t—t;,C — 0, — —(1/2)g(t—

to)? and S — M(t — to) (V3 — 2920 — 2gvo(t — to) + 2¢%(t — t0)%/3) /2.
Let us apply this result to fountain clocks (Fig.11).
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Figure 12. Magneto-optical trap (MOT on the left) and sequence of four laser beam spa-
tial zones or time pulses to generate a closed atom interferometer in space or space-time
(on the right).

We have seen that the total phase factor acquired by the atomic wave
packet is: exp [%} exp [ip(t) (z — z(t)) /h] . On one arm the additional

momentum communicated after the first interaction:
hok = h (w — wpa(v) F kvy — 0) Jvg

combined with & = —(1/2)gT?, in the second phase factor, gives the phase
shift responsible for the Ramsey fringes dk&. Note that this phase shift is
indeed the same as in the atom gravimeter (see below) and an atom fountain
clock is essentially a gravimeter with a recoil momentum communicated
longitudinally proportional to the detuning. The phase factor which comes
from the action gives the proper combination of gravitational phase shift
and second-order Doppler effect (analogy with the Langevin twin paradox):

(Sb — Sa) /h = —Wpq ll + lz—gl <%> (21)

5. Optical atomic clocks

In the optical domain, more interaction zones are necessary to close the
interferometer[16, 17, 18] and cancel the transverse phase shift (see figure
12).

“Quite generally, the phase shift along each arm (S (t,to) — [P (t) .F(t)]zo) /R is equal
to minus the time integral of the kinetic energy.
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Optical clocks
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Figure 13. Pair of interferometers generated by two counterpropagating pairs of two
copropagating laser beams. In one case the atoms are in their ground state in the central
gap while they are in the excited state in the second interferometer central drift zone.
The four interaction regions may be separated in space or in the time domain. They may
involve single photon or multiphoton (Raman or cascade) transitions.

This closed circuit may have different shapes [18]: parallelogram (case of
three or four copropagating laser beams) or trapezoid (two counterpropa-
gating pairs of copropagating laser beams) or more complicated geometries
with larger deviations [21, 19, 20]. The choice depends on the type of phase
shift that one wishes to measure: symmetric configurations are sensitive
only to inertial effects while asymmetric ones depend also on the laser de-
tuning. A variety of transition processes and effective fields may be used:
single photon, two-photon transitions of Raman or cascade type [17, 18].
These interactions may be separated in space to generate a spatial inter-
ferometer [10, 25] or in time to generate a space-time interferometer, as in
recent realizations of optical clocks [9, 22, 23], which use magneto-optical
traps of Ca, Sr or Mg. Cold atoms are released from a magneto-optical trap
and submitted to the four pulses required to generate the interferometer.
An interference pattern such as that displayed in Fig. 14 is obtained. High
performances of stability and accuracy have been achieved in these various
experiments.

In the case of the trapezoid geometry, there are two different interferom-
eters created by two counterpropagating pairs of copropagating laser beams
(Figure 15) with opposite recoil shifts. The two fringe systems are sepa-
rated by 24. This splitting is clearly resolved on Fig. 16 where the velocity
distribution in a thermal beam of Magnesium averages out the side fringes.
In current realizations of optical clocks the fringe spacing is set precisely
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Figure 14. Interference pattern of an optical Calcium clock (Courtesy of F. Riehle,
P.T.B.)

Recoil shift in optical clocks

VW

recoil doublet

Figure 15. Energy-momentum diagrams illustrating exchanges in the two interferometers
obtained with two counterpropagating pairs of two copropagating laser beams. The recoil
shifts of central fringes are opposite. The first manifestation of this splitting was observed
in the saturation spectrum of the methane molecule [24] and was the first quantitative
demonstration of the exchange of momentum %k between light and an atomic species.

equal to this recoil splitting, in order to have two superimposed interference
patterns as in Fig. 14.

In other experiments this recoil splitting is used to perform an accurate
frequency measurement of i/mgtom and consequently of the fine structure
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INTERFEROMETRE A MAGNESIUM
(W. Ertmer et coll.)

offset| frequency| [kHz]

hv?/Mc?
80 kHz

A=457 nm

Figure 16. Interference patterns obtained with a Magnesium interferometer by the group
of W. Ertmer [9]. Because of the thermal velocity distribution, only the central fringes
dominate and one can see clearly the recoil splitting between the two fringe systems,
with a resolution (reciprocal fringe width) increasing with the distance between the beam
splitters.

constant « thanks to the relation:

o2 — 2R mp Matom D

C Me Myp Matom

where all quantities (Rydberg constant, ratio of proton mass m, to the
electron mass m, ..) may be known with an accuracy equal or better than
10?2, which means that o may be determined directly with an accuracy at
the 1079 level [20]. Since the recoil shift is proportional to the difference
in kinetic energies in both arms of the interferometer, it can be increased
very significantly (quadratically) by an accumulation of momentum quanta
hk on one arm with respect to the other arm [21, 19, 20]. Recent deter-
minations on Earth by the group of S. Chu have been pushed as far as
the 1078 level, which is of great importance as a test of QED, given the
discrepancies between various other determinations and independently of
any QED calculation.

The theory of optical clocks begins with perturbative and numerical
approaches around 1977 [16]. A more sophisticated theory, which is still
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used to describe experimental results, introduces 2x2 ABCD matrices in
the internal spinor space of the two-level system and free propagation be-
tween pulses/field zones and was first published in 1982 [26, 27]. In 1990,
the ABCD¢ formalism for atom wave propagation in gravito-inertial fields
has been presented, for the first time, in Les Houches [15]. The strong field
S-matrix treatment of the electromagnetic field zones was then published
in 1994 [13, 10]. In 1995, the problem of Rabi oscillations in a gravitational
field has been treated in analogy/complementarity with the frequency chirp
in curved wave-fronts [28]. Finally the dispersive properties of the group
velocity of atom waves in strong e.m. fields have been described as a gener-
alization of the dynamical neutron diffraction theory [30] in neutron beam
splitters [29, 31, 32]. To-day we combine all these elements in a new sophis-
ticated and realistic quantum description of optical clocks. This effort is
also underway for atomic inertial sensors and is essential to develop strate-
gies to eliminate the inertial field sensitivity of optical clocks [22]. In the
next paragraphs, we outline the complete general relativistic derivation of
phase shifts which was published in 1999 [4].

6. General relativistic framework for atom interferometry:

It is possible to include all possible effects of inertial fields, as well as all
the general relativistic effects of gravitation in a consistent and synthetic
framework[33, 29, 4], in which the atomic fields are second-quantized. The
starting point is the use of coupled field equations for atomic fields of a
given spin in curved space-time: e.g. coupled Klein-Gordon, Dirac or Proca
equations. Gravitation is described by the metric tensor g,,, and by tetrads,
which enter in these equations. Several strategies can then be adopted: one
can perform Foldy-Wouthuysen transformations [34], but conceptual diffi-
culties arise in the case of arbitrary g,,; one can go to the weak-field limit
9w = M +hy with |hW\ < 1 and use renormalized spinors and finally one
can consider hy,, as a spin-two tensor-field in flat space-time [36, 37, 38] and
use ordinary relativistic quantum field theory. Using this last approach, it
has been possible to derive field equations that display all interesting terms,
coupling Dirac atomic fields, gravitational and electromagnetic fields and
simple expressions of the corresponding relativistic phase shifts in atom
interferometers [4].

The evolution equation of the state vector |¥(t)) in the interaction pic-
ture is

0 ) = [ 01 @Ve@ow) [20), (22)

where the operator Vg(z), acting on the field operator 6(x), is given in
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compact form by:

c v ¢ v
Vo = Za”hw/p + h.c. = 1 {a"hyw, p }—l— (23)

with p° = —a’p; ++"me and p; = iho; (24)

The free field operator 6 is written as:
2 + —
0(z) = X2 [(@p) [e (PN (@) + di (D)) (2)], where e.(7) and
d.(p’) are the annihilation operators for the particles or antiparticles, re-
: (&) o . .
spectively, and X7 are the positive or negative energy solutions of the
free Dirac equation:

1 M2 r i V- T
X50(@) = G| B (PITETT IR

We are interested in the output spinor corresponding to one-particle (an-
tiparticle) states: e.g. ¥(z) = (0|0(x) |¥(¢)) for atoms. The evolution of
this spinor is governed by the equation:

ihoyp = —ihey’y 04 + My + Ve (z)y (26)

to which we may add terms corresponding to diagonal magnetic dipole and
off-diagonal electric dipole interactions [33, 29]. This equation has been
used in reference [29, 4] to discuss all the terms that lead to a phase shift
in an interferometer.

For the phase shift, the general result is:

Sp = —% t: dt’ {%p“hw@b + at', t')p¥
rTcEy lCQPM%“;gO(;) S Xﬁ] N
< {ﬁ x (ﬁ(fo V) T (To + T, E) - E%ﬂ ?} (27)
where § is the mean spin vector
=3 BB it Dlaw) /2y (28)

rr!

where @ = (01 + 70)|) is the spatial part of the Thomas-Pauli-Lubanski
4-vector operator [39].

Expression (27) displays all the terms which may lead to a gravitational
phase shift in a matter-wave interferometer:
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— the terms involving hgo lead to the gravitational shift (hgy = —2
G- 7/c?), to shifts involving higher derivatives of the gravitational po-
tential and to the analog of the Thomas precession (spin-orbit coupling
corrected by the Thomas factor).

— the terms which involve & = {hO%}, give the Sagnac effect in a rotat-
ing frame (E = x '/c), the spin-rotation coupling and a relativistic
correction (analogous to the Thomas term for hgp). They describe also
the Lense-Thirring effects coming from inertial frame-dragging by a
massive rotating body, which is a source for h.

= ..
— the other terms, which involve the tensor A= {h"} describe genuine
General Relativity effects such as the effect of gravitational waves and
de Sitter geodetic precession (which also includes the Thomas term for

h005).

In fact the phase calculation is usually more involved since formula (27)
applies only to the case of straight unperturbed trajectories. In practice,
however, one cannot ignore the fact that, when calculating the phase to
first-order for a given term of the Hamiltonian, the motion of the particles is
affected by other terms. One example, mentioned above, is the calculation of
the gravitational shift within the atom beam splitters, in which one cannot
ignore the important effects of the diffracting electromagnetic field on the
trajectories of the particles [29, 31, 28, 32]. Gravitational phase shifts have
to be calculated along these trajectories. Another example is the gravity
field itself, which, on earth, gives parabolic trajectories for atoms. The phase
shift for the other terms in equation (27) has to be calculated along these
parabolas. A convenient way to achieve these calculations is to replace Zp +
ot" and ¥ in equation (27) by the classical trajectory {Z(t"), v(t')} obtained
in the ABCD formalism. In the non-relativistic limit, one is brought back
to the Schroedinger equation and, up to second degree in position and
momentum operators, the best approach is to take the full benefit of the
ABCD formalism developed above, which gives exact results. Higher-order
terms can be treated as perturbations along unperturbed trajectories.

The reader will find calculations of the phases corresponding to the
various terms in references [18, 17, 29, 40, 41]. In these calculations, one
should never forget that the external field h,, acts not only on the atoms
but also on other components of the experiments, such as mirrors and laser
beams and that, depending on the chosen gauge, additional contributions
may enter in the final expression of the phase which should, of course, be
gauge independent. As an example, the Sagnac phase which can be removed

®Some authors reserve the name “Thomas precession” for the contribution coming
specifically from an acceleration @ (which has been included here in hgp) and separate
it from de Sitter precession.
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from the above formula by a simple coordinate transformation will reappear
in the beam splitter phases.

The expressions valid for spins 0 and 1/2 may be conjectured to be
valid for arbitrary spin if /2 is replaced by the corresponding spin operator
S. The extension of the formulas is presently underway using higher spin
formalisms.

Formula (27) also displays the analogy with electromagnetic interac-
tions: h,,p”/2 plays the role of the 4-potential A, and (E(p)/2c)V x
(E— ?Z -pc/ E(ﬁ)) plays the role of a gravitomagnetic field V x A This
new correspondence between the gravitational interaction and the electro-
magnetic interaction generalizes the so-called gravitoelectric and gravito-
magnetic interactions introduced by de Witt [42] and Papini [43].

The spin-independent part of this phase shift (Linet-Tourrenc [44] term)
(c?/2E(P)) puh**py, (combination which appears also in the generalized
Thomas precession) corresponds to u,A"/y where w, is the 4-velocity
pu/M and the corresponding circulation of potential takes the form of the
Aharonov-Bohm phase formula § A#dx,,. Using Stokes theorem in four di-
mensions, this integral gives the phase shift as the ratio of the flux of gravi-
toelectromagnetic forces through the interferometer space or spacetime area
to a quantum of flux of force % or hc:

—hdp = %%p“hwpudt = j[%p“hm,dx”
- % / do™ (9, A, — B, A,) with A, = %p“hw (29)
in analogy with electromagnetism. This formula gives:
Sp = —k.g T? (30)

for the gravitational phase shift[17, 18] as the flux of a gravitoelectric field
—c2Vhgo /2 = § through a space-time area (which is the case above for the
fountain clock), whereas the Sagnac phase shift® is the flux of a gravito-
magnetic field 2V x h = 2¢Q) through an area A in space [17, 18], which
atomic clocks usually do not have:

_ 2c0.A

~ he/M (31)

dep

5This Sagnac phase shift (in units of 27) can be written as the projection of the
orbital angular momentum (in units of %) of the interfering particles. An example of
nuclear Sagnac interferometer is provided by rotating molecules, for which this phase
shift is naturally quantized.
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Figure 17. Atom-wave gravimeter developed at Stanford University by S. Chu and
coworkers [47]. 5.10% Cesium atoms extracted from a low pressure background vapor are
loaded in a MOT in 600 ms and launched upwards. A sequence of microwave, velocity
sensitive Raman and state selective blow away pulses, places 3.10° atoms in the 6 S, /2
F=3 Mr = 0 state with an effective vertical temperature of ~ 10 nK. The atomic cloud
enters a magnetically shielded region and is illuminated by the sequence w/2 — 7w — /2
of interferometer Raman pulses which enter from below. The retromirror is vibration
isolated with an actively stabilized system. The right picture displays typical fringes for
T=160 ms. Each point corresponds to a single launch of the atoms separated by 1.3 s
and taken over one minute.

The spin-rotation term is discussed in more detail in references [29, 4]. Its
effect on atomic clocks needs to be carefully evaluated, since, unlike the
magnetic field, the gravitomagnetic field cannot be shielded.

7. State-of-the-art for gravito-inertial sensors

To emphasize the sensitivity of atom interferometers to inertial and grav-
itational fields, a short overview of realizations of gravito-inertial sensors,
including gravimeters, gradiometers and atomic gyros is proposed to the
reader in this last section. A first very successful application of atom inter-
ferometry is gravimetry and was developed by S. Chu and his collaborators
(Fig. 17). This is an extension of the celebrated COW experiments for neu-
trons [45] to the atom world. In 1991, in one of the early experiments of
atom interferometry [46], this group demonstrated a resolution of 3.1078
for ¢ in 40 minutes integration time. In recent earth gravity measurements,
the relative sensitivity is dg/g ~ 3.1079 after 60 seconds and the absolute
accuracy 5.107°[20, 47]. This resolution is sufficient to see clearly the effect
of ocean loading on the earth tides. Also, the agreement with a conventional
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Figure 18. Space-time diagram of the atomic gravimeter.

corner cube gravimeter (FG-5) is at the 7.107%g level, which constitutes by
itself, a test of the equivalence principle between an atomic species and a
macroscopic object at that level. The corresponding space-time diagram is
given in Fig.18. From which the following phase shift is calculated with
the ABCD¢ formalism [3]:

§p = —k((z2+2)/2— 21— 2, + 20)
) \% [sinh (A(T +T)) = 2sinh (AT)] (00 + 577)

+/7 [1 + cosh (/4(T +T")) — 2cosh (vAT)] (20 — %)] (32)

which, to first-order in v and for "= T’ reduces to:

hk
kgT? + knyT? [1—72 gT? — (vg + m)T - zo} (33)
where the first term, which is precisely expression (30), gives huge phase
shifts for matter-waves compared to what could be obtained with light
rays, since the times T can be of the order of one second, and g7 being
of the order of ten meters is compared to an optical wavelength. The next
term is a significant correction due to the gravitational field gradient ~.
One can also measure directly these field gradients, with two gravimeters
using two clouds of cold atoms and sharing the same vertical laser beam
splitters. It is then no more necessary to have a very sophisticated iner-
tial platform for the reference mirror and it is possible to measure directly
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Figure 19. Atom wave gradiometer of Yale University. The two clouds of atoms share
the same Raman beams, which generate two atom interferometers separated vertically
by one meter.

the differential acceleration between these two clouds. This is the principle,
illustrated in Fig.19, of the gradiometers developed first in Stanford then
in Yale by M. Kasevich and his coworkers [20, 49]. The present sensitivity
is 41079572/ Hz or 4 E/v/Hz and the accuracy 1E/v/Hz for an extrap-
olated 10 m separation between accelerometers. For the future, one may
think of using this principle for gravitational wave detection in space [48].

The first demonstration of a gyro using atom waves was performed at
the P.T.B. in Braunschweig in a joint collaboration with the author [50].
The photograph of this experiment is given in Fig. 20. The Sagnac phase
shift formula (31) given above reveals the considerable gain in sensitivity
brought by matter-waves, since, in this formula, the rest mass energy Mc?
has to be replaced by the photon energy hv in the case of light waves.
This expression can be derived by a number of equivalent approaches and
the simplest one is to use the rotation operator in Schroedinger equation,
which rotates the wave vectors of the beam splitters. This formula applies
to the trapezoid geometry used in the previous experiment and also to the
parallelogram geometry, as suggested in [18], analog of the Mach-Zehnder
optical interferometer, which has been used in more recent experiments
and which has the advantage of being insensitive to laser detuning. For
rotations, the best sensitivity achieved up to now is 6.10~0rad.s~1Hz /2
[51] with the set-up of Fig. 21. Clearly, if the atomic motion is reversed
hgo is unchanged, while ﬁ.ﬁ is reversed. This property is used to separate
rotations and accelerations through the use of counterpropagating atomic
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Figure 20. Photograph of the first atom wave gyro [50]. The calcium atomic beam orig-
inating from the oven on the left crosses two counterpropagating pairs of copropagating
laser beams generated be the pair of cat’s eyes facing each other on the right platform.
These four beams act as beam splitters, deflectors and recombiner for the atom waves and
the excited state output of the interferometer is monitored via the fluorescence light by
the photomultiplier on the extreme right of the apparatus. The whole set-up is mounted

on a rotating table.
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Figure 21. Atomic gyro developed at Yale in the group of Mark Kasevich. The Sagnac
phases corresponding to the two opposite thermal atom beams have opposite signs and
are substracted. The Earth rotation is responsible for the offset.
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Figure 22. Principle of the cold Cesium gyro-accelerometer developed at the Observatory
in Paris in collaboration between D. Holleville, J. Fils, A. Landragin, N. Dimarcq , A.
Clairon (LHA and BNM-LPTF), Ph. Bouyer (IOTA), Ch. Salomon (LKB) and Ch. Bordé
(LPL-ERGA).

beams. A compact device (30 cm height) using cold atoms and the Cesium
clock technology (PHARAO) is under development in Paris, in a joint col-
laboration between several laboratories [52], and is shown in Figs.22 and
23. Here again, cold atoms are launched along counterpropagating parabolic
trajectories, in order to separate the various components of the acceleration
and of the rotation fields.

The sensitivity numbers quoted here are expected to improve rapidly in
the near future, especially in space experiments, in which general relativis-
tic effects should become detectable. The space project called HYPER [54]
aims precisely at the detection of such effects thanks to the possibility to
have long drift times in space (Fig.24 ). This will increase considerably the
sensivity of these devices. The technology of trapping and manipulating
cold atoms developed for the project ACES (Atomic Clock Ensemble in
Space) will be directly applicable to inertial sensors for many applications
in deep space navigation of space probes. Among the goals of HYPER,
there is a very accurate measurement of the fine structure constant «a, a
test of the equivalence principle at the atomic level, using two different
atomic species in the interferometer, a detection of the periodic signal com-
ing from the latitudinal dependence of the Lense-Thirring effect in polar
orbit, decoherence studies ....In fact, atom interferometers are so sensitive
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Figure 23. Cold atom gyro-accelerometer under construction at the Observatory in
Paris.
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Figure 24. Schematic picture of an atom interferometer in space providing long drift
times and a large interferometer area.

to gravito-inertial fields and to their gradients that, it will be necessary
during the next years to develop many new techniques and tricks in the
field of atom optics (e.g. phase conjugation of atom waves ...) to isolate the
specific signature of investigated phenomena.

An accurate measurement of the effect of gravitation and inertia on
antimatter also appears as a possibility already discussed in reference [53]
with a transmission-grating interferometer, although we believe, for obvious
reasons, that an antiatom interferometer using laser beams for the antihy-
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drogen beam splitters (so-called Ramsey-Bordé interferometers) would be
better suited for such an experiment. coherent beams of antihydrogen will
be produced either by Bose-Einstein condensation and/or by stimulated
bosonic amplification” [8].
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