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Summary. — We first give a short historical introduction to the fundamentals of
atom interferometry with internal excitation, based on density matrix diagrams and
a Liouville space approach. Then, a new framework is proposed to compare and unify
photon and atom optics, which rests on the quantization of proper time. A common
wave equation written in five dimensions reduces both cases to 5D optics of mass-
less particles. The ordinary methods of optics (eikonal equation, Kirchhoff integral,
Lagrange invariant, Fermat principle, symplectic algebra and ABCD matrices. . . )
are used to solve this equation in practical cases. The various phase shift cancel-
lations, which occur in atom interferometers, are then easily explained. A general
phase-shift formula for interferometers is derived in five dimensions, which applies
to clocks as well as to gravito-inertial sensors. This contribution is an update of a
previous presentation of 5D matter-wave optics and interferometry. Electromagnetic
interactions are explicitly added in the 5D metric tensor in complete analogy with
Kaluza’s work. The 5D Lagrangian is rederived and an expression for the Hamil-
tonian suitable for the parabolic approximation is presented. The corresponding
equations of motion are also given. The 5D action is shown to cancel for the actual
trajectory which is a null geodesics of the 5D metric. This presentation is mainly
devoted to the classical aspects of the theory and only general consequences for the
quantum phase of matter-waves are outlined. The application to Bordé-Ramsey
interferometers is given as an illustration.
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1. – Introduction

Atom interferometry with labelled internal energy states [1] has emerged from high-
resolution laser spectroscopy, essentially from a search for the proper combination of
sub-Doppler and Ramsey separate fields techniques [4, 5] and as a consequence of recoil
physics [6-8]. For a long time the external motion of atoms had been treated classically
in spectroscopy. But the exchange of momentum which occurs naturally during the
emission or absorption of photons by atoms and molecules leads to a coupling between
the internal and external worlds of these objects and quantum mechanics manifests itself
in both aspects in a correlated (intricated) way. It became necessary to introduce atomic
wave packets with values of their central momentum differing by integer multiples of
the photon momentum �

−→
k [52,27]. In the beginning the use of standing waves resulted

in complex multiple exchanges of momentum with the counterpropagating fields. The
use of travelling waves allowed to isolate well-defined interferometers [52, 45, 9, 1, 16, 48].
Any quantum-mechanical process results from the interference of two paths and may be
represented by a double Feynman (density matrix) diagram [27]. As a simple example let
us consider the diagram corresponding to linear absorption of light by a gas of two-level
atoms [36] (fig. 1).

Fig. 1. – A density matrix diagram [27] gives an interferometric representation of the linear
absorption of photons by a two-level atom [36]. The ground-state poputation is turned into an
off-diagonal density matrix element (optical coherence) by a first interaction with light. This
optical coherence is transformed back into a population at a second space-time point. If the
delay between the two vertices is fixed, the phase factor associated with the detuning is also
fixed and gives rise to Ramsey fringes. In the optical domain, the Doppler phase needs also to
be controlled and this is achieved by closing the interferometer with two additional interactions
(e.g., as in fig 5).
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This process constitutes the archetype of an atom interferometer in which two prop-
agation modes differ by both internal energy (mass) and external motion (momentum)
and are coupled by a coherent mode coupler. Ramsey fringes are obtained when the
momentum on one arm is modified because of an additional kinetic energy provided by
a detuning from the resonance condition [2]. The resulting phase is well-defined only
if the distance between the two interaction vertices is fixed. Furthermore, in the opti-
cal domain, the splitting between the outgoing wave packets is too large and velocity
dependent which blurs out the fringes. This is why the separation of the field zones
needs to be associated with a sub-Doppler technique for which the interferometer will
close upon itself. Several interferometer architectures satisfy this condition as discussed
in references [9, 10] and specifically the Bordé-Ramsey scheme and the photon-echo ge-
ometry having, respectivey, two pairs of parallel beam splitters either counterpropagat-
ing or copropagating. A first demonstration of the first type was given both with SF6

molecules [45, 9] and Ca atoms [46]. The sensitivity to inertial and gravitational fields
has then been discussed in several places [50, 1, 10, 2] and demonstrated in two early
experiments [11, 49]. An overview of these early developments can be found in [3] and
especially in [19, 15, 55]. Many new interaction geometries have followed these first ar-
chitectures in order to increase interferometer areas thanks to multiple interactions and
atom cloud levitation [12, 13, 35, 40, 30, 32, 37, 38] or to acquire sensitivity to gravito-
inertial fields along several dimensions [25, 29] with numerous terrestrial and spatial
applications [31,51].

A specific tool adapted to density matrix diagrams and hence also to interferometers,
is the relativistic Liouville equation in the interaction representation, in which uncoupled
free modes are described by free propagators (obtained from wave equations for free
fields) and mode couplings by an interaction Liouvillian L̃int(x) and the corresponding
propagator for the Liouville vector [27]:

|ρ̃(σ)〉〉 = T exp
[
−i

∫ σ

σ0

d4x′L̃int(x′)
]
|ρ̃(σ0)〉〉,

where T is a time-ordering operator, σ and σ0 space-like hypersurfaces.
In the absence of decoherence in the interferometer |ρ̃(σ)〉〉 = |ψ̃(σ)ψ̃†(σ)〉〉, where

the ket and bra vectors correspond to each arm of the interferometer and the previous
formula gives directly a relativistic expression of the phase shift of the interferometer.
Traditional approaches to atom interferometers use sequences of such evolution operators
(free propagators and S-matrices) [48, 21, 19, 34]. These approaches treat the internal
states of the atom as an additional degree of freedom superimposed on the external
motion without really integrating both aspects in a unified framework. When complex
objects such as atoms or molecules interfere with themselves, one should consider that
each particle inside the composite object interferes with itself as well. The optical paths
of these various individual waves have contributions from the internal motion as well as
from the external motion of the entire composite object. In the usual picture, different
contributions of the action coming from different discrete masses corresponding to the
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internal excitations enter an additional phase factor in an artificial way. For a long time
the magic cancellation which occurs between the phase coming from the action and the
phase originating from the separation of the end points of an interferometer remained
mysterious. The new viewpoint, that we suggest now, considers the internal atomic
or molecular motion as an additional spatial dimension through which the waves may
propagate.

A wave equation written in five dimensions [20, 47, 33] reduces atom optics to 5D
optics of massless particles. The ordinary methods of optics (Lagrange invariant, Fermat
principle, eikonal equation [22], symplectic algebra and ABCD matrices [14]. . . ) are
used to solve this equation in practical cases. The foundations of relativistic 5D optics
for matter waves have been presented in an earlier publication [47,33]. This is a natural
framework to unify and compare photon and atom optics thanks to formulas valid for
arbitrary mass. The concept of mass and its relationship with proper time in terms of
associated dynamical variables and conjugate quantum observables are presented again
here. Gravito-inertial fields and electromagnetic fields are included in the 5D metric
tensor as in Kaluza’s theory. A corrected expression is given here for the 5D Lagrangian
and corresponding equations of motion are derived. As in 4D, a superaction makes
the link with the quantum-mechanical phase in 5D. The 5D generalization of the ABCD
theorem [14,21,2] for matter-wave packets leads to a single formula for the quantum phase
in the presence of external fields taking into account the internal degrees of freedom of
the particle. The various phase shifts, which occur in interferometers, including the effect
of gravitational waves [25, 17, 18], are then easily derived and discussed from formulas
valid for both relativistic atom waves and optical beams.

2. – The status of mass in classical relativistic mechanics:
From 4 to 5 dimensions

In special relativity, the total energy E and the momentum components p1, p2, p3 of
a particle, transform as the contravariant components of a four-vector

(1) pμ = (p0, p1, p2, p3) = (E/c,−→p )

and the covariant components are given by

(2) pμ = gμνpμ,

where gμν is the metric tensor. In Minkowski space of signature (+,−,−,−)

(3) pμ = (p0, p1, p2, p3) = (E/c,−p1,−p2,−p3).

These components are conserved quantities when the system considered is invariant under
corresponding space-time translations. They will become the generators of space-time
translations in the quantum theory. For massive particles of rest mass m, they are
connected by the following energy-momentum relation (see fig. 2):
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Fig. 2. – 5D energy-momentum picture.

(4) E2 = p2c2 + m2c4

or, in manifestly covariant form,

(5) pμpμ − m2c2 = 0.

This equation cannot be considered as a definition of mass since the origin of mass is not
in the external motion but rather in an internal motion (see the Appendix of ref. [44]). It
simply relates two relativistic invariants and gives a relativistic expression for the total
energy. Thus mass appears as an additional momentum component mc corresponding to
internal degrees of freedom of the object and which adds up quadratically with external
components of the momentum to yield the total energy squared (Pythagoras’ theorem).
In the reference frame in which p = 0 the mass squared is responsible for the total energy
and can thus be seen as stored internal energy just like kinetic energy is a form of external
energy. Even when this internal energy is purely kinetic, e.g., in the case of a photon in
a box, it appears as pure mass m∗ for the global system (i.e. the box). This new mass
is the relativistic mass of the stored particle

(6) m∗c2 =
√

p2c2 + m2c4.

The concept of relativistic mass has been criticized in the past but, as we shall see, it
becomes relevant for embedded systems. We may have a hierarchy of composed objects
(e.g. nuclei, atoms, molecules, atomic clocks . . . ) and at each level the mass m∗ of the
larger object is given by the sum of energies p0 of the inner particles. It transforms as p0

with the internal coordinates and is a scalar with respect to the upper level coordinates.
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Mass is conserved when the system under consideration is invariant in a proper time
translation and will become the generator of such translations in the quantum theory. In
the case of atoms, the internal degrees of freedom give rise to a mass which varies with
the internal excitation. For example, in the presence of an electromagnetic field inducing
transitions between internal energy levels, the mass of atoms becomes time-dependent
(Rabi oscillations). It is thus necessary to enlarge the usual framework of dynamics to
introduce this new dynamical variable as a fifth component of the energy-momentum
vector.

Equation (5) can be written with a five-dimensional notation

(7) Gμ̂ν̂ p̂μ̂p̂ν̂ = 0 with μ̂, ν̂ = 0, 1, 2, 3, 4,

where p̂μ̂ = (pμ, p4 = −mc); Gμν = gμν ; Gμ̂4 = G4ν̂ = 0; G44 = G44 = −1.
This leads us to consider also the picture in the coordinate space and its extension

to five dimensions. As in the previous case, we have a four-vector representing the
space-time position of a particle

xμ = (ct, x, y, z)

and in view of the extension to general relativity

(8) dxμ = (cdt,dx,dy,dz) = (dx0,dx1,dx2,dx3).

The relativistic invariant is, in this case, the elementary interval ds, also expressed
with the proper time τ of the particle

(9) ds2 = dxμdxμ = c2dt2 − d−→x 2 = c2dτ2,

which is, as that was already the case for mass, equal to zero for light

(10) ds2 = 0

and this defines the usual light cone in space-time.
For massive particles proper time and interval are non-zero and eq. (9) defines again

an hyperboloid. As in the energy-momentum picture we may enlarge our space-time
with the additional dimension s = cτ (fig. 3)

(11) dx̂bμ = (cdt,dx,dy,dz, cdτ) = (dx0,dx1,dx2,dx3,dx4)
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Fig. 3. – 5D coordinates.

and introduce a generalized light cone for massive particles(1)

(12) dσ2 = Gμ̂ν̂ dx̂μ̂dx̂bν = c2dt2 − d−→x 2 − c2dτ2 = 0.

As pointed out in the case of mass, proper time is not defined by this equation from
other coordinates but is rather a true evolution parameter representative of the internal
evolution of the object. It coincides numerically with the time coordinate in the frame
of the object through the relation

(13) cdτ =
√

G00dx0.

Finally, if we combine momenta and coordinates to form a mixed scalar product, we
obtain a new relativistic invariant which is the differential of the action. In 4D

(14) dS = −pμdxμ

and in 5D we shall therefore introduce the superaction

(15) Ŝ = −
∫

p̂μ̂dx̂μ̂

(1) In this picture, antiparticles have a negative mass and propagate backwards on the fifth
axis as first pointed out by Feynman. Still, their relativistic mass m∗ is positive and hence they
follow the same trajectories as particles in gravitational fields as we shall see from the equations
of motion.
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equivalent to

(16) p̂μ̂ = − ∂Ŝ

∂x̂μ̂
with μ̂ = 0, 1, 2, 3, 4.

If this is substituted in

(17) Gμ̂ν̂ p̂μ̂p̂μ̂ = 0,

we obtain the Hamilton-Jacobi equation in 5D

(18) Gμ̂ν̂∂μ̂Ŝ∂ν̂ Ŝ = 0,

which has the same form as the eikonal equation for light in 4D. It is already this striking
analogy which pushed Louis de Broglie to identify action and the phase of a matter wave
in the 4D case. We shall follow the same track for a quantum approach in our 5D case.

What is the link between the three previous invariants given above? As in optics, the
direction of propagation of a particle is determined by the momentum vector tangent to
the trajectory. The 5D momentum can therefore be written in the form

(19) p̂μ̂ = dx̂μ̂/dλ,

where λ is an affine parameter varying along the ray. This is consistent with the invariance
of these quantities for uniform motion.

In 4D the canonical 4-momentum is

(20) pμ = mc
gμνdxν√
gμνdxμdxν

= mcgμνuν ,

where uν = dxν/dτ is the normalized 4-velocity with dτ =
√

gμνdxμdxν given by (9).
We observe that dλ can always be written as the ratio of a time to a mass

(21) dλ =
dτ

m
=

dt

m∗ =
dθ

M
= . . . ,

where τ is the proper time of individual particles (e.g. atoms in a clock or in a molecule),
t is the time coordinate of the composed object (clock, interferometer or molecule) and
θ its proper time; m,m∗,M are respectively the mass, the relativistic mass of individual
particles and their contribution to the scalar mass of the device or composed object.

In the usual paradigm of relativity, the time t is a coordinate variable and the proper
time τ is taken as the evolution parameter to describe the motion of particles in space-
time. In this presentation however, proper time is an independent coordinate describing
the internal motion of massive particles, so that we shall rather chose the coordinate
time as the evolution parameter. Another good reason for this choice is that, in order to
describe an ensemble of atoms or of atom waves within a clock or an atom interferometer,
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it cannot be a good choice to use the proper time of a specific atom to describe the full
device. We shall therefore write in 5D

(22) p̂μ̂ = m∗Gμ̂ν̂
˙̂x
bν

= m∗ ˙̂xμ̂

expressed with the “relativistic mass”

(23) m∗ = m
dt

dτ
=

mc√
gμν ẋμẋν

and where the dot refers to derivation with respect to a “laboratory time” (identical to
the proper time θ of the apparatus only in the absence of gravitation or inertial effects).
With this choice ˙̂x

0
= c and p̂0 = m∗c. An alternate choice could be to take the proper

time θ of the full device as the evolution parameter. In which case

(24) cdθ =
√

G00dx0 and M = m∗√G00.

From

(25) dσ2 = Gμ̂ν̂ dx̂μ̂dx̂bν = 0

we infer in 5D

(26) dŜ = 0

and in 4D

(27) dS = −pμdxμ = −mc2dτ.

In Appendix A of ref. [44], we generalize these relations to an object, such as a clock,
a molecule, ..., composed of a number of subparticles and illustrate the origin of proper
time as coming from the inner structure of the object.

3. – Generalization in the presence of gravitational and electromagnetic
interactions

The previous 5D scheme can be extended to general relativity with a 4D metric tensor
gμν and an electromagnetic 4-potential Aμ

(28) gμν(pμ − qAμ)(pν − qAν) = m2c2

(q = −e for the electron).
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We shall search for a metric tensor Gμ̂ν̂ for 5D such that the generalized interval given
by

dσ2 = Gμ̂ν̂dx̂μ̂dx̂bν

is an invariant.
Let us recall that, from the equivalence principle, the metric tensor gμν can be ob-

tained from the Minkovski flat space-time tensor ημν using infinitesimal frame trans-
formations from a locally inertial frame. Quite generally any infinitesimal coordinate
transformation considered as a gauge transformation can be used to introduce a compo-
nent of the gravito-inertial field. As an example, in 4D, the transformation (case of a
rotation)

dx′i = dxi + αi
0dx0,

dx′0 = dx0(29)

transforms the interval

(30) ds2 = g′00(dx′0)2 + g′ijdx′idx′j

into

(31) ds2 = g00(dx0)2 + 2g0idx0dxi + gijdxidxj

with

g00 = g′00 + αi
0α

j
0g

′
ij ,(32)

g0j = αi
0g

′
ij ,(33)

gij = g′ij ,(34)

g00 = g
′00

= 1/g′00,(35)

g
′ij = 1/g′ij .(36)

Using

(37) gijg
i0 = −g00gj0,

we find

αi
0 = − gi0

g00
,(38)

αi
0α

j
0g

′
ij = −gi0g

i0

g00
.(39)
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In the case of rotation we recover the usual metric tensor in the rotating frame.
The action S becomes

S = −
∫

p′μdx′μ = −
∫

p′0dx′0 −
∫

p′idx′i(40)

= −
∫

p′0dx0 −
∫

p′i(dxi + αi
0dx0)

S = −
∫

(p′0 + p′iα
i
0)dx0 −

∫
p′idxi = −

∫
pμdxμ,(41)

which gives the Sagnac phase as
∫

(pig
i0/g00)dx0.

The same approach can be used with the fifth dimension by introducing the gauge
transformation

dx′4 = dx4 + β4
μdx̂μ

dx̂′μ = dx̂μ(42)

to generate the off-diagonal elements Gμ4

dσ2 = G44(dx4)2 + 2G44β
4
μdx4dx̂μ + (gμν + β4

μβ4
νG44)dx̂μdx̂ν

G44 = G′
44,(43)

Gμ4 = β4
μG44,(44)

Gμν = gμν + β4
μβ4

νG44.(45)

The superaction Ŝ given by (15) becomes

Ŝ = −
∫

p̂μ̂dx̂′μ̂ = −
∫

pμdx̂′μ −
∫

p̂4dx′4(46)

= −
∫

pμdx̂μ +
∫

mc(dx4 + β4
μdx̂μ)(47)

Ŝ = −
∫

(pμ − mcβ4
μ)dx̂μ +

∫
mc2dτ,(48)

which yields the Aharonov-Bohm phase if mcβ4
μ = qAμ.

The metric tensor in five dimensions Gμν is thus written as in Kaluza’s theory to
include the electromagnetic gauge field potential Aμ

Gμ̂ν̂ =
(

Gμν Gμ4

G4ν G44

)
=

(
gμν + κ2G44AμAν κG44Aμ

κG44Aν G44

)
,(49)

Gμ̂ν̂ =
(

Gμν Gμ4

G4ν G44

)
=

(
gμν −κAμ

−κAν G44

)
,
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where κ is given by the gyromagnetic ratio of the object. This metric tensor is such that

Gμ̂bλG
bλν̂ =

(
Gμλ Gμ4

G4λ G44

)(
Gλν Gλ4

G4ν G44

)
= δμ̂

ν̂(50)

=
(

Gμλ −κAμ

−κAλ G44

)(
gλν + κ2G44AλAν +κG44Aλ

+κG44Aν G44

)

=
(

Gμλgλν κG44G
μλAλ−κG44A

μ =0
−κAλ(gλν + κ2G44AλAν) + κG44G

44Aν −κ2G44A
λAλ + G44G44

)
= δμ̂

ν̂

which implies

Gμλgλν = δμ
ν

G44 = 1/G44 + κ2AλAλ(51)

The equation

(52) Gμ̂ν̂ p̂μ̂p̂ν̂ = 0,

with

(53) p̂μ̂ = (pμ,−mc),

and G44 = −1 is therefore equivalent to eq. (28)

(54) gμν(pμ − qAμ)(pν − qAν) = m2c2.

Higher-order electromagnetic interactions are introduced via the multipolar expansion
pμ−qAμ +QλFμλ, where dipole moments will become operators in the quantum descrip-
tion.

4. – Hamiltonian and Lagrangian: Parabolic approximation

In some cases it is convenient to assume that the energy E is close to a known value
E0 either because energy is conserved and remains equal to its initial value or because of
a slow variation of parameters. This means that the usual hyperbolic dispersion curve is
locally approximated by the parabola tangent to the hyperbola for the energy E0. This
approximation scheme applies to massive as well as to massless particles. We can then
make use of the identity E = E0

2 + E2

2E0
+ O(ε2) valid to second-order in ε = E − E0

(parabolic approximation).



Atom interferometry using internal excitation: Foundations and recent theory 13

Let us start with the exact formula

(55) p̂0 =
p̂0

2
+

(p̂0)2

2p̂0
,

in which (p̂0)2 is obtained from

0 = Gμ̂ν̂ p̂μ̂p̂ν̂ = G00(p̂0)2 + 2G0bip̂0p̂
bi + G

bibj p̂
bip̂bj(56)

= G00(p̂0 +
G0bi

G00
p̂
bi)

2 +

(
G
bibj − G0biG0bj

G00

)
p̂
bip̂bj(57)

=
1

G00
(p̂0)2 + f̂

bibj p̂
bip̂bj ,(58)

i.e.:

(59) (p̂0)2 = −G00f̂
bibj p̂
bip̂bj ,

where

(60) f̂
bibj = G

bibj − G0biG0bj

G00

is the 4D metric tensor, inverse of G
bibj . Hence

(61) p̂0 =
p̂0

2
−

G00f̂
bibj p̂
bip̂bj

2p̂0
= G00p̂0 + G0bip̂

bi

and

p̂0 =
p̂0

2G00
−

f̂
bibj p̂
bip̂bj

2p̂0
−

G0bj p̂
bjc

G00
,(62)

î, ĵ = 1, 2, 3, 4.

With the choice of time coordinate such that ˙̂x
0

= c the Hamiltonian can be finally
written as

H =
m∗c2

2G00
−

f̂
bibj p̂
bip̂bj

2m∗ −
G0bj p̂

bjc

G00
,(63)

î, ĵ = 1, 2, 3, 4.

This expression is exact but requires the knowledge of the relativistic mass m∗. In the
parabolic approximation this quantity will finally be approximated by its central value.
From the previous exact expression of the Hamiltonian, the Lagrangian is recovered as

(64) L̂ = −p̂μ̂
˙̂x
μ̂

= −1
2
m∗Gμ̂ν̂

˙̂x
μ̂ ˙̂x

ν̂
.
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5. – Equations of motion

From this Lagrangian we may infer the following equations of motion:

(65) p̂μ̂ = − ∂L̂

∂ ˙̂x
μ̂

= m∗Gμ̂ν̂
˙̂x
ν̂
,

i.e.

(66) ˙̂x
bi

=
f̂
bibj p̂
bj

m∗ +
G0bjc

G00

and

(67) ˙̂p
bλ =

1
2
m∗(∂

bλGμ̂ν̂) ˙̂x
μ̂ ˙̂x
bν
,

or

(68) ˙̂p
μ̂

=
1
2
m∗Gμ̂bλ(∂

bλG
bκν̂ − 2∂

bνG
bλbκ) ˙̂x

bκ ˙̂x
bν
.

These equations can be compared to those obtained either from the equation for geodesic
lines in 5D obtained from δdσ2 = 0 with

(69) dσ2 = Gμ̂ν̂dx̂μ̂dx̂ν̂ ,

or from the condition

(70) D ˙̂x
μ̂

= 0.

We proceed as in 4D and find

¨̂x
μ̂

+ (5)Γμ̂

bνbλ
˙̂x
bν ˙̂x
bλ

= 0

with

(71) (5)Γμ̂

bνbλ
˙̂x
bν ˙̂x
bλ

=
1
2
Gμ̂bκ(2∂

bλG
bκbν − ∂

bκG
bνbλ) ˙̂x

bν ˙̂x
bλ
.

We wish now to check that we recover the usual equations of motion in 4D when the
metric is independent of the 5th coordinate

(72) ¨̂x
μ

+(5) Γμ
νλ

˙̂x
ν ˙̂x

λ
+(5) Γμ

4λ
˙̂x
4 ˙̂x

λ
+(5) Γμ

ν4
˙̂x
4 ˙̂x

ν
+(5) Γμ

44
˙̂x
4 ˙̂x

4
= 0,
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with

(5)Γμ
4λ =

G44

2
κFμ

λ ,(73)

(5)Γμ
ν4 =

G44

2
κFμ

ν ,(74)

(5)Γμ
44 = Gμν∂4Gν4 = 0.(75)

The Christoffel symbols in 4D and 5D are connected by

(76) (5)Γμ
νλ − (4)Γμ

νλ =
κ2

2
(AνFμ

λ + AλFμ
ν ).

Hence

(77) ¨̂x
μ

+ (4)Γμ
νλ

˙̂x
ν ˙̂x

λ
+

κ2

2
(AνFμ

λ + AλFμ
ν ) ˙̂x

ν ˙̂x
λ

= −G44
˙̂x
4
κFμ

λ
˙̂x
λ
;

using

(78) −G44
˙̂x
4

= − ˙̂x4 + G4λ
˙̂x
bλ
,

we recover the usual 4D equation of motion

(79) m∗(¨̂x
μ

+ (4)Γμ
νλ

˙̂x
ν ˙̂x

λ
) = qFμ

λ
˙̂x
λ
,

since

(80) m∗ ˙̂x4 = p̂4 = −mc.

If we reintroduce the dependence in the fifth coordinate, we obtain the rate of mass
change associated with the change of internal motion induced by an electromagnetic
field

˙̂p4 =
1
2
m∗(∂4Gμ̂ν̂) ˙̂x

μ̂ ˙̂x
bν

= m∗(∂4Gμ4) ˙̂x
μ ˙̂x

4
(81)

and similar expressions for the rate of energy-momentum changes induced by internal
transitions. In the case of electric dipole transitions, the photon energy-momentum is
exchanged at the Rabi frequency rate. However in this approximation we do not obtain
the Rabi oscillations (pendellösung) which require to introduce two coupled modes and
therefore a quantum treatment of their amplitudes.
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6. – Wave equations for atom waves and wave packet propagation

The simplest approach to wave equations for atom waves ignores the spin associated
with internal atomic states and uses a Klein-Gordon equation for each of these spinless
states. This approach was extensively described in references [25, 33, 47]. The Klein-
Gordon equation in 5D reads

(82) �̂ϕ = Gμ̂ν̂∇̂μ̂∇̂ν̂ϕ = 0.

One can write a corresponding equation for the phase. This 5D eikonal equation
replaces the Hamilton-Jacobi equation for massive particles in 4D (and the WKB ap-
proximation reduces to the eikonal approximation [22])

(83) Gμ̂ν̂∂μ̂φ∂ν̂φ = 0,

whose solution is given by the 5D-superaction

(84) hφ = −
∫

p̂μ̂dx̂μ̂ = −E

c

(∫
cdt −

∫
dl(4)√
G00

+
∫

G
bj0

G00
dx
bj

)
,

where the waves are assumed to be “monochromatic” (i.e. of constant energy E), where
dl(4) is the path length in 4-space given by the induced spatial metric f̂

bibj

dl(4) =
√

−f̂
bibjdxbidxbj ,

f̂
bibj = G

bibj −
G0biG0bj

G00

and the corresponding wavelength is

λ(4) =
hc

E

√
G00,

which is the proper combination of de Broglie and de Broglie-Compton wavelengths (or
wave vectors) (

1
λ(4)

)2

=
1

G00

(
E

hc

)2

=
(

1
λdBC

)2

+
(

1
λdB

)2

,

where, in the absence of interactions,

λdBC =
h

mc
and λdB =

h

p
.

There is presently no physical clock at the de Broglie-Compton frequency mc2/h although
it appears quite possible in the future through stimulated absorption and emission of



Atom interferometry using internal excitation: Foundations and recent theory 17

photon pairs in the creation/annihilation process of electron-positron pairs. As we shall
see later a real clock is generated at a Bohr frequency by a superposition of internal
states and it oscillates at the difference of the two corresponding de Broglie-Compton
frequencies on both sides of an interferometer.

The other components of Gμ̂ν̂ enter the expression of the “optical path length” as
various contributions to a generalized index of refraction which describe various phase
shifts: gravitational waves, Aharonov-Bohm, Aharonov-Casher. . . . The last term in (84)
corresponds specifically to the Sagnac effect and to the shift induced by a scalar electric
potential.

Many atom interferometers today work with atomic wave packets essentially non-
monochromatic and for which the previous approach is not adapted. A relativistic
Schroedinger-like equation can be written using the Hamiltonian derived above in the
parabolic approximation. If furthermore this Hamiltonian is at most quadratic in posi-
tion and momentum operators the best description of the propagation of the wave packets
is provided by the extension to 5D of the ABCD formalism for Gaussian optics. The
ABCD theorem states that a wave packet propagates along the classical trajectory with a
phase factor given by the classical action [14,21,2,26,34]. In 5D the classical superaction
cancels and the wave packet propagates in a way such that there is no dephasing along
the classical trajectory followed by the wave packet center [47].

Ideally, one would require a wave equation for massive particles of arbitrary spin
and mass and interacting with electromagnetic fields in the presence of gravito-inertial
fields. This implies a lot of heavy mathematical formalism and we shall thus limit
our considerations to spin-1/2 atoms in a two-level system. This was our approach
in refs. [19, 17] where coupled Dirac equations were written in curved space-time.

In the first approach, the following coupled Dirac equations are written for each level
(with ε0123 = 1)

(85)
i�γα̂eμ

α̂(∂μ + Γμ)ψb − mbcψb − (iμb/2c)Fα̂β̂γα̂γβ̂ψb − (iμ∗
ab/4)F̃α̂β̂γα̂γβ̂ψa = 0,

i�γα̂eμ
α̂(∂μ + Γμ)ψa − macψa − (iμa/2c)Fα̂β̂γα̂γβ̂ψa − (iμab/4)F̃α̂β̂γα̂γβ̂ψb = 0,

where eμ
α̂ is a tetrad or vierbein which defines a local inertial coordinate system in which

a spinor can be introduced and Γμ = 1
8 [γα̂, γβ̂ ]eν

α̂∇μeβ̂ν is a spinorial connection. The
tetrad field is obtained from the metric tensor by the condition

(86) eμ
α̂eν

β̂
gμν = ηα̂β̂ = diag(+ −−−).

As pointed out in ref. [17], these equations can be cast together as a single equation for
an eight-component isospinor and one can introduce a generalized covariant derivative
and a generalized connection. Quite generally, a matter-wave interferometer can be
viewed as a device to detect this connection. The previous equations may also be written
with space-time dependent Fock-Ivanenko matrices γ(x).
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The relativistic phase shifts for Dirac particles have been derived and discussed at
length from these equations [19,17,18,21].

One can turn the previous equations into a 5D Dirac equation

Λμ̂Dμ̂ψ = 0

with new matrices

Λμ = γμσ0,

Λ4 = (1 + κγμAμ)σ0 + ζασαγμγν F̃μν ,

where the Pauli matrices refer to internal states. It is easy to generalize Volkov solu-
tion of Dirac equation to this 5D case. Another choice is to work in the interaction
representation.

By iteration of this Dirac equation

Λ
μ̂
Dμ̂(Λν̂Dν̂ψ) = 0

with

Λ
μ

= Λμ; Λ
4

= (−1 + κγμAμ)σ0 + ζασαγμγν F̃μν ,

we recover the Klein-Gordon equation

(87) �̂ϕ = Gμ̂ν̂∇̂μ̂∇̂ν̂ϕ = 0.

7. – 5D expression of the phase shift

The total phase difference between both arms of an interferometer is usually calcu-
lated as the sum of three terms: the difference in the action integral along each path,
the difference in the phases imprinted on the atom waves by the beam splitters and a
contribution coming from the splitting of the wave packets at the exit of the interferom-
eter [21,25]. If α and β are the two branches of the interferometer:

δφ(q) =
N∑

j=1

[Sβ(tj+1, tj) − Sα(tj+1, tj)]/�(88)

+
N∑

j=1

(
k̃βjqβj − k̃αjqαj

)
− (ωβj − ωαj) tj + (ϕβj − ϕαj)

+[p̃β,D(q − qβ,D) − p̃α,D(q − qα,D)]/�,

where Sαj = Sα(tj+1, tj) and Sβj = Sβ(tj+1, tj) are the action integrals along α(β) paths;
�kαj(�kβj) are the momenta transferred to the atoms by the j-th beam splitter along
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Fig. 4. – Time sequence of interactions on both arms of an interferometer displaying the 4D
wave vector exchange at each beam splitter.

the α(β) arm; qαj and qβj are the classical coordinates of the centers of the beam split-
ter/atom interactions; ωαj(ωβj) are the angular frequencies of the e.m. waves; ϕαj(ϕβj)
are the fixed phases of the j-th beam splitters; D is the detection port (fig. 4).

With our new approach in 5D the action terms should be replaced by the phase jumps
induced by the beam splitters along the fourth space coordinate cτ

(89)
N∑

j=1

c2[δmβjτβj − δmαjταj ]/�

in which δmβj(δmαj) are the mass changes introduced by each splitter. To obtain this
result we write the action terms as

(90)
N∑

j=1

Sβ(tj+1, tj) =
N∑

j=1

−c2[mβj+1τβj+1 − (mβj + δmβj)τβj ]

with mβN+1 = mβD and τβN+1 = τβD. We shift j by one unit for the first term

(91)
N∑

j=1

Sβ(tj+1, tj) = c2mβ1τβ1 +
N∑

j=1

−c2[mβjτβj − (mβj + δmβj)τβj ] − c2mβDτβD.

We suppress the first term c2mβ1τβ1 and add a current term c2mβDτ following the logic
of a phase term analogous to the spatial terms (these terms are generally eliminated
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between both arms of the interferometer but they are indeed new phases arising in the
5D approach)

N∑
j=1

Sβ(tj+1, tj) is replaced by
N∑

j=1

−c2[mβjτβj − (mβj + δmβj)τβj ] + c2mβD(τ − τβD)

=
N∑

j=1

c2δmβjτβj + c2mβD(τ − τβD).(92)

We have therefore in 5D

δφ(q) =
N∑

j=1

(
k̃βjqβj − k̃αjqαj

)
− (ωβj − ωαj)tj + (ϕβj − ϕαj)(93)

+[p̃β,D(q − qβ,D) − p̃α,D(q − qα,D)]/�

where pβj , �kβj and qβj have now an additional 4-component equal, respectively, to
mβjc, δmβjc and cτβj . For Hermite-Gauss wave packets, this phase should be evaluated
at the mid-point (mid-point theorem [2]) q = (qβ,D +qα,D)/2. This mid-point phase shift
is

δφ((qβ,D + qα,D)/2) =
N∑

j=1

(
k̃βjqβj − k̃αjqαj

)
− (ωβj − ωαj)tj + (ϕβj − ϕαj)(94)

+[(p̃β,D + p̃α,D)(qα,D − qβ,D)/2]/�.

If energy is conserved, we may use the conservation of the Lagrange invariant (derived
from Stokes theorem)

(95) (p̃αj+1 + p̃βj+1)(qβj+1 − qαj+1) −
[
(p̃αj + p̃βj) + �

(
k̃βj + k̃αj

)]
(qβj − qαj) = 0

and obtain the 5D scalar product
(96)

δφ((qβN+1 + qαN+1)/2) =
N∑

j=1

[
k̃βj − k̃αj

2
(qβj + qαj)

]
− (ωβj −ωαj)tj +(ϕβj −ϕαj)

(we have also assumed qβ1 = qα1). If energy is not conserved, we may use instead the
symplectic Lagrange-Helmholtz invariant in the quadratic approximation (Hamiltonian
of degree 2 at most in position and momentum)

(97)
p̃αj+1

m∗
α

(qβj+1−qαj+1)−
p̃αj

m∗
α

(qβj−qαj) =
p̃βj+1

m∗
β

(qαj+1−qβj+1)−
p̃βj

m∗
β

(qαj−qβj),
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Fig. 5. – Bordé-Ramsey interferometer (higher-frequency recoil peak geometry) obtained with
two counterpropagating pairs of copropagating travelling waves.

which reduces to the previous Lagrange invariant with a good approximation for small
relative energy changes. This explains the cancellation of the action and of the mid-point
phase shift in the usual 4D approach as emphasized in reference [47].

For illustration, let us apply the previous formulas to the Bordé-Ramsey interferom-
eter [1, 16] represented in fig. 5.

Formula (94) gives for the mid-point 5D phase

δφ((q̂β4 + q̂α4)/2) = �k.�q1 + (mb − ma)c2τ1/� − ωt1(98)

−�k.�qβ2 + (−mb + ma)c2τβ2/� + ωt2

−�k.�qβ3 + (mb − ma)c2τβ3/� − ωt3

+�k.�qβ4 + (−mb + ma)c2τβ4/� + ωt4

+
4∑

j=1

(ϕβj − ϕαj)

+
[
(�pβb4 + �pαa4 + ��k) · (�qα4 − �qβ4)/2

]
/�

+ [(mb + ma + ma − mb)(τα4 − τβ4)/2] c2/�.



22 Ch. J. Bordé

In the absence of gravito-inertial fields (e.g. in the inertial frame of the atoms):

t2 = t1 + T ; �qβ2 = �q1 +

(
�p1 + ��k

)
T

m∗
b1

; τβ2 = τ1 +
mb

m∗
b1

T ; �pβ2 = �p1 + ��k

t3 = t2 + T ′; �qβ3 = �q1 +

(
�p1 + ��k

)
T

m∗
b1

+
�p1T

′

m∗
a

; τβ3 = τ1 +
mb

m∗
b1

T +
ma

m∗
a

T ′; �pβb3 = �p1

t4 = t3 + T ; �qβ4 = �q1 +

(
�p1 + ��k

)
T

m∗
b1

+

(
�p1 − ��k

)
T

m∗
b2

+
�p1T

′

m∗
a

;

τβ4 = τ1 +
mb

m∗
b1

T +
mb

m∗
b2

T +
ma

m∗
a

T ′; �pβb4 = �p1 − ��k

and for the lower branch

�qα2 = �q1 +
�p1T

m∗
a

; τα2 = τ1 +
ma

m∗
a

T ; �pα2 = �p1,(99)

�qα3 = �q1 +
�p1(T + T ′)

m∗
a

; τα3 = τ1 +
ma

m∗
a

(T + T ′); �pα3 = �p1,

�qα4 = �q1 +
�p1(2T + T ′)

m∗
a

; τα4 = τ1 +
ma

m∗
a

(2T + T ′); �pα4 = �p1.

We see that the final positions and proper times differ on both arms by small quantities,
owing to the relativistic differences of velocities on both arms

�qβ4 − �qα4 =
(

1
m∗

b1

+
1

m∗
b2

− 2
m∗

a

)
�p1T +

(
1

m∗
b1

− 1
m∗

b2

)
��kT,(100)

τβ4 − τα4 =
(

mb

m∗
b1

+
mb

m∗
b2

− 2ma

m∗
a

)
T.

Finally

(101) δφ = [2ω − (m∗
b1 + m∗

b2 − 2m∗
a)c2/�]T.

For each segment, we check the conservation of the symplectic invariant (Lagrange-
Helmoltz), e.g.,(

�pβ2

m∗
b1

+
�pα2

m∗
a

)
· (�qα2 − �qβ2)/2 +

(
mb

m∗
b1

+
ma

m∗
a

)
(τα2 − τβ2)c2/2 = 0,(102)

�pα3 + �pβ3

m∗
a

· (�qβ3 − �qα3) −
�pα2 + �pβ2

m∗
a

· (�qβ2 − �qα2)(103)

+
2ma

m∗
a

(τβ3 − τα3)c2/2 − 2ma

m∗
a

(τβ2 − τα2)c2/2 = 0,
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which correspond to a conserved Lagrange invariant only in the approximation of con-
served energy along the arms of the interferometer. Within this approximation, we may
use the approximate expression

δφ = �k · [�q1 − (�qα2 + �qβ2)/2 − (�qα3 + �qβ3)/2 + (�qα4 + �qβ4)/2](104)

+ωba [τ1 − (τα2 + τβ2) /2 − (τα3 + τβ3) /2 + (τα4 + τβ4)/2]

−ω(t1 − t2 + t3 − t4)

= 2ωt − ωbaT

2

(
2
ma

m∗
a

+
mb

m∗
b1

+
mb

m∗
b2

)

−�k2T

2

(
1

m∗
b1

+
1

m∗
b2

)
+

�k.�p1T

2

(
1

m∗
b2

− 1
m∗

b1

)
.

The same recoil and second-order Doppler corrections are obtained from this ap-
proximate formula to first-order but only expression (101) is exact. The second-term
corresponds to the difference in proper times for the clock term (that we have called a
quantum Langevin twin paradox in ref. [47]). Note that this clock term implies that the
mass differs on both arms and does not correspond to a different clock on each arm as
in the classical Langevin twin paradox. The coherent quantum superposition of both
arms is essential to generate a clock. The remaining piece of the recoil shift comes from
first-order Doppler shifts contained in the third term and originating from the spatial �q

part of the shift.
This recoil shift [6-8] is now the basis for accurate measurements of h/m and deter-

minations of the fine structure constant α [55, 53,54].
The same approach can be followed for the phase shift induced by gravito-inertial

fields in photon echo interferometers [21]. For a gravimeter in the gravity field g and
gradient γ

δφ = −k((z2 + z′2)/2 − z1 − z′1 + z0)(105)

= − k
√

γ

[
[sinh(

√
γ(T + T ′)) − 2 sinh(

√
γT )]

(
V0 +

�k

2m∗

)
+
√

γ[1 + cosh(
√

γ(T + T ′)) − 2 cosh(
√

γT )]
(

z0 −
g

γ

)]
,

which, to first-order in γ and for T = T ′ reduces to

(106) kgT 2 + kγT 2

[
7
12

gT 2 − (V0 +
�k

2m∗ )T − z0

]
.

The fact that the optical path difference in space, corresponding to the splitting of the
end points, is exactly compensated by the action in 4D [21], is now understood as the
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5D property that for massless particles equal paths are followed during equal times [22].
For a gyrometer [2]

(107) δφSagnac =
∑

j=1,4

�kj · �rj + �k4 ·
(�r′4 − �r4)

2
,

which gives to first order the familiar expression proportional to energy

(108) δφSagnac =
2�Ω. �A

�/m∗

and more general formulas for time-dependent combinations of gravito-inertial fields [23,
24,28].

For a gravitational wave detector [25]

δφ = −khV0ξT
2 sin(ξT + ϕ)

[
sin2(ξT/2)/(ξT/2)2

]
(109)

−khq0

2
[cos(2ξT + ϕ) − 2 cos(ξT + ϕ) + cos ϕ]

−khV0T [cos(2ξT + ϕ) − cos(ξT + ϕ)] + ϕ0 − 2ϕ1 + ϕ2,

where h and ξ are, respectively, the amplitude and the frequency of the gravitational
wave.

The sensitivity comes essentially from the last two terms which can be interpreted as
the response of the gravimeter to the phase modulation imposed on the laser beams by
the gravitational wave. This method was already analyzed as early as 1983 in [50].

To obtain sensitivity from the action of the gravitational wave on the atom wave itself,
we may rely on an additional recoil term in Bordé-Ramsey interferometers [19]

(110) δφ = −m∗c2

�
T

(
�k

m∗c

)2

h cos(ξT + ϕ)[sin(ξT )/(ξT )],

since this term is proportional to the relativistic mass of the atoms provided that an
efficient beam splitter is used to boost the ratio of momenta squared. As this was the
case already for the Sagnac shift, there is a potential huge gain factor as one replaces the
photon energy by the relativistic energy of the atom both described by m∗c2.

8. – Conclusions

As a first conclusion, the motion of massive or massless particles in 5D follows a null
geodesic just as it is the case for photons in 4D. The Lagrangian is proportional to the
interval squared and both vanish for the real motion. This has the consequence that
the phase, which is proportional to the 5D superaction, will also vanish between two
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points of the real trajectory of the particle. As a consequence the phase shift in atom
interferometers results almost(2) only from the phase jumps introduced by the beam
splitters. The significance and status of the action in the 4D atomic phase are clarified
and we offer an interpretation for the origin of compensations between action and spatial
phase through the additional optical path along the fifth dimension.

The comparison between atom optics and photon optics becomes straightforward
thanks to formulas valid for zero mass and at the same time one can easily discuss the
possibilities of relativistic atom interferometry for gravitational wave detection.

A theoretical framework for the redefinition of the SI is provided by the connection
between geometry, metric tensor and metrology and there are many implications for
fundamental metrology [20].

Mass and proper time are entangled concepts which correspond to conjugate variables
in classical mechanics and to non-commuting operators in quantum mechanics. Their
respective units thus require a joint definition in which the unit of mass is defined from
the mass difference of the two levels involved in the definition of the unit of time. A com-
patible mise en pratique requires to associate a quantum clock with a macroscopic mass
through a phase measurement either by atom interferometry and atom counting or in the
watt balance. The Avogadro number is then obtained directly from the measurement of
the de Broglie-Compton frequency of the carbon atom.

The proper time acquires a status in Quantum Mechanics and we may now describe
the quantum theory of atomic clocks in General Relativity from their internal proper-
ties [2].

Finally, temperature and proper time can be combined in a complex proper time
variable in the theory of clocks. This accounts for thermal decoherence in atom inter-
ferometers. A generalized line shape for the usual Doppler broadening can be derived
accordingly [36].

We have now a tool to perform the synthesis between atomic clocks and inertial
sensors thanks to a single formula for the phase as well as a comparison of gravitational
and electromagnetic (AB phase) effects on the atomic phase. The requirements to have a
physical clock at the de Broglie-Compton frequency are clarified. No quantum observable
oscillating at a given frequency can be generated unless a superposition of corresponding
mass states is created between both arms of an interferometer [39,41-43].

The consequences for the interpretation of quantum mechanics of a non-local hidden
phase originating from the internal phase of a composed object have still to be explored
in detail.

∗ ∗ ∗

Special thanks to François Impens and Arnaud Landragin for expert advice and sug-
gestions.

(2) I.e. up to a small recoil term.
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[8] Hall J. L., Bordé Ch. J. and Uehara K., “Direct optical resolution of the recoil effect
using saturated absorption spectroscopy”, Phys. Rev. Lett., 37 (1976) 1339.
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